Influence of Na and K contents on the antibacterial response of piezoelectric biocompatible NaxK1-xNbO3 (x = 0.2–0.8)
Tài liệu tham khảo
Fukada, 1957, On the piezoelectric effect of bone, J. Phys. Soc. Jpn., 12, 1158, 10.1143/JPSJ.12.1158
Marino, 1970, Piezoelectric effect and growth control in bone, Nature, 228, 473, 10.1038/228473a0
Hastings, 1988, Electrical effects in bone, J. Biomed. Eng., 10, 515, 10.1016/0141-5425(88)90109-4
Messiery, 1979, Ferro-electricity of dry cortical bone, J. Biomed. Eng., 1, 63, 10.1016/0141-5425(79)90013-X
Lang, 1981, Pyroelectricity: occurrence in biological materials and possible physiological implications, Ferroelec, 34, 3, 10.1080/00150198108238694
C. S. McDowell, Implanted bone stimulator and prosthesis system and method of enhancing bone growth, U.S Patent 6143035A (2000).
Baxter, 2010, Electrically active bioceramics: a review of interfacial responses, Annal. Biomed. Eng., 38, 2079, 10.1007/s10439-010-9977-6
Verma, 2020, Multifunctional response of piezoelectric sodium potassium niobate (NKN) toughened hydroxyapatite based biocomposites, ACS Appl. Biol. Mater., 10.1021/acsabm.0c00642
Verma, 2020, Electro-mechanical and polarization-induced antibacterial response of 45S5 bioglass-sodium potassium niobate piezoelectric ceramic composites, ACS Biomater. Sci. Eng., 6, 3055, 10.1021/acsbiomaterials.0c00091
Verma, 2020, Antibacterial and cellular response of piezoelectric Na0.5K0.5NbO3 modified 1393 bioactive glass, Mater. Sci. Eng. C, 116, 111138, 10.1016/j.msec.2020.111138
Park, 1980, Piezoelectric ceramic implants: a feasibility study, J. Biomed. Mater. Res., 14, 269, 10.1002/jbm.820140308
Dubey, 2013, Space charge polarization induced augmented in vitro bioactivity of piezoelectric (Na,K) NbO3, J. Appl. Phys., 114, 124701, 10.1063/1.4822022
Rajabi, 2015, Piezoelectric materials for tissue regeneration: a review, Acta Biomater., 24, 12, 10.1016/j.actbio.2015.07.010
More, 2017, Piezoelectric material - A promising approach for bone and cartilage regeneration, Med. Hypo., 108, 10, 10.1016/j.mehy.2017.07.021
Jacob, 2018, Piezoelectric smart biomaterials for bone and cartilage tissue engineering, Inflam. Regen., 38, 10.1186/s41232-018-0059-8
Tandon, 2018, Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair, Acta Biomater., 73, 10.1016/j.actbio.2018.04.026
Dubey, 2019, Perovskite ceramics as new-generation materials for orthopedic applications, Trans. Indian. Inst. Met., 72, 1999, 10.1007/s12666-018-1519-1
Sugarman, 1989, Infections associated with prosthetic devices: magnitude of the problem, Infect. Dis. Clin. N. Am., 3, 187, 10.1016/S0891-5520(20)30257-9
Jr Fitzgerald, 1989, Infections of hip prostheses and artificial joints, Infect. Dis. Clin. N. Am., 3, 329, 10.1016/S0891-5520(20)30266-X
Costerton, 1999, Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318, 10.1126/science.284.5418.1318
Berbari, 1998, Risk factors for prosthetic joint infection: case-control study, Clin. Infect. Dis., 27, 1247, 10.1086/514991
Singh, 2018, Various biomaterials and techniques for improving antibacterial response, ACS Appl. Biol. Mater., 1, 3, 10.1021/acsabm.8b00033
Baier, 1984, Surface properties determine bioadhesive outcomes: methods and results, J. Biomed. Mater. Res., 18, 327, 10.1002/jbm.820180404
Flock, 2000, Extracellular-matrix-binding proteins as targets for the prevention of Staphylococcus aureus infections, Mol. Med. Today, 5, 532, 10.1016/S1357-4310(99)01597-X
Roy, 2012, Pathophysiology and pathogenesis of osteomyelitis, Osteomyelitis, 10.5772/32171
Hoyle, 1991, Bacterial resistance to antibiotics: the role of biofilms, Prog. Drug Res., 37, 91
Stewart, 2001, Antibiotic resistance of bacteria in biofilms, Lancet, 358, 135, 10.1016/S0140-6736(01)05321-1
Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002
Dasgupta, 1987, Combined evaluation of circulating immune complexes and antibodies to Pseudomonas aeruginosa as an immunologic profile in relation to pulmonary function in cystic fibrosis, J. Clin. Immunol., 7, 51, 10.1007/BF00915425
Costerton, 1987, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol., 41, 435, 10.1146/annurev.mi.41.100187.002251
Menzies, 2010, The impact of contact angle on the biocompatibility of biomaterials, Optom. Vis. Sci., 87, 387, 10.1097/OPX.0b013e3181da863e
Baron, 1996
Wright, 1979, The outer membrane of gram-negative bacteria, Vol. 7, 427
Ferris, 1986, Site specificity of metallic ion binding in Escherichia coli K-12 lipopolysaccharide, Can. J. Microbiol., 32, 52, 10.1139/m86-010
Rivera, 1989, Analysis of a common antigen lipopolysaccharide from Pseudomonas aerugenosa, J. Bacteriol., 171, 2244, 10.1128/jb.171.4.2244-2248.1989
Sonohara, 1995, Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurement, Biophys. Chem., 55, 273, 10.1016/0301-4622(95)00004-H
Kłodzińska, 2010, Effect of zeta potential value on bacterial behavior during electrophoretic separation, Electrophoresis, 31, 1590, 10.1002/elps.200900559
Nakahara, 2002, Effects of exposure of CHO-K1Cells to a 10-T static magnetic field, Radiology, 224, 817, 10.1148/radiol.2243011300
Bajpai, 2012, Moderate intensity static magnetic field has bactericidal effect on E. Coli and S. Epidermidis on sintered hydroxyapatite, J. Biomed. Mater. B: Appl. Biomater., 100B, 1206, 10.1002/jbm.b.32685
Bajpai, 2014, Synergistic effect of static magnetic field and HA-Fe3O4 magnetic composites on viability of S. aureus and E. coli bacteria, J. Biomed. Mat. Res. B: Appl. Biomat., 102B, 524, 10.1002/jbm.b.33031
Liu, 1997, Mechanisms of the bactericidal activity of low amperage electric current (DC), J. Antimicrob. Chemother., 39, 687, 10.1093/jac/39.6.687
Boda, 2015, Inhibitory effect of direct electric field and HA-ZnO composites on S. Aureus biofilm formation, J. Biomed. Mat. Res. Part B: Appl. Biomater., 104, 1064, 10.1002/jbm.b.33455
Tan, 2016, Surface-selective preferential production of reactive oxygen species on piezoelectric ceramics for bacterial killing, ACS Appl. Mater. Interfaces, 8, 24306, 10.1021/acsami.6b07440
Yao, 2019, The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties, Coll. Surf. B: Biointerfaces, 175, 463, 10.1016/j.colsurfb.2018.12.022
Singh, 2020, Combined effect of surface polarization and ZnO addition on antibacterial and cellular response of Hydroxyapatite-ZnO composites, Mater. Sci. Eng. C, 107, 110363, 10.1016/j.msec.2019.110363
Swain, 2020, Polarized piezoelectric bioceramic composites exhibit antibacterial activity, Mater. Chem. Phys., 239, 122002, 10.1016/j.matchemphys.2019.122002
Kalbacova, 2007, The effect of electrochemically simulated titanium cathodic corrosion products on ROS production and metabolic activity of osteoblasts and Monocytes/macrophages, Biomaterials, 28, 3263, 10.1016/j.biomaterials.2007.02.026
Serena, 2009, Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species, Exp. Cell Res., 315, 3611, 10.1016/j.yexcr.2009.08.015
Kumar, 2018, Surface-selective bactericidal effect of poled ferroelectric materials, J. Appl. Phys., 124, 014901, 10.1063/1.5024721
Dubey, 2014, Pulsed electrical stimulation and surface charge induced cell growth on multistage spark plasma sintered hydroxyapatite-barium titanate piezobiocomposite, J. Am. Ceram. Soc., 97, 481, 10.1111/jace.12647
Harkes, 1991, Adhesion of Escherichia coli on to a series of poly(methacrylates) differing in charge and hydrophobicity, Biomaterials, 12, 853, 10.1016/0142-9612(91)90074-K
Kodjikian, 2003, Bacterial adherence of Staphylococcus epidermidis to intraocular lenses: a bioluminescence and scanning electron microscopy study, Invest. Ophthalmol. Vis. Sci., 44, 4388, 10.1167/iovs.03-0186
Henriques, 2005, Adhesion of Pseudomonas aeruginosa and Staphylococcus epidermidis to silicone-hydrogel contact lenses, Optom. Vis. Sci., 82, 446, 10.1097/01.opx.0000168585.53845.64
Okada, 2008, Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties, Dent. Mater. J., 27, 565, 10.4012/dmj.27.565
K. Nelsson, J. Lidman, K. Ljjungstrom, C. Kjellman, Biocompatible material for implants, Patent No. US 6, 526, 984 B1, (2003).
Jalalian, 2012, Biocompatible ferroelectric (Na, K)NbO3, Appl. Phys. Lett., 100, 012904, 10.1063/1.3673282
Chen, 2017, Fabrication of biocompatible potassium sodium niobate piezoelectric ceramic as an electroactive implant, Materials (Basel), 10, 18
Jaeger, 1962, Hot pressing of potassium sodium Niobates, J. Am. Ceram. Soc., 45, 209, 10.1111/j.1151-2916.1962.tb11127.x
Kakimoto, 2010, Low-temperature sintering of dense (Na, K)NbO3 piezoelectric ceramics using the citrate precursor technique, J. Am. Ceram. Soc., 93, 2423, 10.1111/j.1551-2916.2010.03748.x
MacLeod, 1948, The effect of related ions on the potassium requirement of lactic acid bacteria, J. Biol. Chem., 176, 39, 10.1016/S0021-9258(18)50999-6
Dawson, 1987, Effects of potassium ion concentrations on the antimicrobial activities of ionophores against ruminal anaerobes, Appl. Environ. Microb., 53, 2363, 10.1128/aem.53.10.2363-2367.1987
Niño-Martínez, 2019, Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles, Int. J. Mol. Sci., 20, 2808, 10.3390/ijms20112808
Hou, 2015, UV light-induced generation of reactive oxygen species and antimicrobial properties of cellulose fabric modified by 3,3 ′,4,4 ′-Benzophenone tetracarboxylic acid, ACS Appl. Mater. Interfaces, 7, 27918, 10.1021/acsami.5b09993
Wang, 2009, Manufacture and cytotoxicity of a lead-free piezoelectric ceramic as a bone substitute-consolidation of porous Lithium sodium potassium niobate by cold isostatic pressing, Int. J. Oral Sci., 1, 99, 10.4248/ijos.09005
Santos, 2004, Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process, Mater. Res., 7, 625, 10.1590/S1516-14392004000400017
de Loosdrecht, 1994, Tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia, J. Immunol. Meth., 174, 311, 10.1016/0022-1759(94)90034-5
Liu, 1997, Mechanism of cellular 3-(4,5 dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) reduction, J. Neurochem., 69, 581, 10.1046/j.1471-4159.1997.69020581.x
Xie, 2016, Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications, ACS Appl. Mater. Interfaces, 8, 1707, 10.1021/acsami.5b09232
Ning, 2015, Concentration ranges of antibacterial cations for showing the highest antibacterial efficacy but the least cytotoxicity against mammalian cells: implications for a new antibacterial mechanism, Chem. Res. Toxicol., 28, 1815, 10.1021/acs.chemrestox.5b00258
Keyer, 1995, Superoxide and the production of oxidative DNA damage, J. Bacteriol., 177, 6782, 10.1128/jb.177.23.6782-6790.1995
Aebi, 1974, Catalase in Bergmeyer Hans Ulrich, 273
Lowry, 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265, 10.1016/S0021-9258(19)52451-6
Nagaoka, 1990, Kinetic and abinitio study of the prooxidant effect of vitamin E: hydrogen abstraction from fatty acid esters and egg yolk lecithin, J. Am. Chem. Soc., 112, 8921, 10.1021/ja00180a042
Sener, 2004, Melatonin ameliorates chronic renal failure-induced oxidative organ damage in rats, J. Pineal Res., 36, 232, 10.1111/j.1600-079X.2004.00113.x
Benderitter, 2003, The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation, Radiat. Res., 159, 471, 10.1667/0033-7587(2003)159[0471:TCMAAB]2.0.CO;2
Ohkawa, 1979, Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction, Anal. Biochem., 95, 351, 10.1016/0003-2697(79)90738-3
Kosec, 2008, KNN-based piezoelectric ceramics, 81
Koruza, 2011, Microstructure evolution during sintering of sodium niobate, J. Am. Ceram. Soc., 94, 4174, 10.1111/j.1551-2916.2011.04753.x
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751, 10.1107/S0567739476001551
Tellier, 2009, Crystal structure and phase transitions of sodium potassium niobate perovskites, Sol. Stat. Sci., 11, 320, 10.1016/j.solidstatesciences.2008.07.011
Zhang, 2011, Study on synthesis and evolutionof sodium potassium niobate ceramic powders by an oxalic acid-based sol-gel method, J. Sol. Gel Sci. Tech., 57, 31, 10.1007/s10971-010-2320-8
Raynaud, 2002, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders, Biomaterials, 23, 1065, 10.1016/S0142-9612(01)00218-6
Gheisari, 2015, A novel hydroxyapatite–Hardystonitenano composite ceramic, Ceram. Int., 41, 5967, 10.1016/j.ceramint.2015.01.033
Li, 2006, Effect of steam treatment during plasma spraying on the microstructure of hydroxyapatite splats and coatings, J. Therm. Spray Technol., 15, 610, 10.1361/105996306X146938
Popa, 2014, Systematic investigation and in vitro biocompatibility studies on mesoporous europium doped hydroxyapatite, Cent. Eur. J. Chem., 12
Popa, 2016, Structural characterization and optical properties of hydroxyapatite/collagen matrix, Rom. Rep. Phys., 68, 1149
Petersen, 2010, Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA, Anal. Bioanal. Chem., 398, 10.1007/s00216-010-3881-7
Fu, 2014, Mechanisms of nanotoxicity: generation of reactive oxygen species, J. Food Drug Anal., 22, 64, 10.1016/j.jfda.2014.01.005
Aebi, 1966, Peroxide sensitivity of acatalatic erythrocytes, Humengenetik, 2, 328, 10.1007/BF00396450
Shin, 1997, Activities of oxidative enzymes related with oxygen tolerance in Bifidobacterium sp, J. Microb. Biotechn., 7, 356
Gregory, 1983, Effect of heme on Bacteroides distasonis catalase and aerotolerance, J. Bacteriol., 156, 1012, 10.1128/jb.156.3.1012-1018.1983
Kim, 2011, Antibacterial activity of silver-nanoparticles against Staphylococcusaureusand Escherichia coli, Kor. J. Microb. Biotechnol., 39, 77
Agnihotri, 2014, Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy, RSC Adv., 4, 3974, 10.1039/C3RA44507K
Maeder, 2004, Lead free piezoelectric materials, J. Electroceram., 13, 385, 10.1007/s10832-004-5130-y
Smith, 2016, Antimicrobial effect of sodium acetate and other hygroscopic salts, Int. J. Geomate., 11
Cai, 2018, Facile and versatile modification of cotton fibers for persistent antibacterial activity and enhanced hygroscopicity, ACS Appl. Mat. Interfaces, 10, 10.1021/acsami.8b14986