Influence of Modification of Porous Glass with Zinc Oxide on Its Photocatalytic Properties

А. С. Саратовский1, М. А. Гирсова1, И. Н. Анфимова1, Andrey Moskalev2, E. S. Motailo2, Т. В. Антропова1
1Institute of Silicate Chemistry, Russian Academy of Sciences, 199034, St. Petersburg, Russia
2St. Petersburg State Technological Institute (Technical University), 190013, St. Petersburg, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Evstropiev, S.K., Karavaeva, A.V., Dukelskii, K.V., Kiselev, V.M., Evstropyev, K.S., Nikonorov, N.V., and Kolobkova, E.V., Transparent bactericidal coatings based on zinc and cerium oxides, Ceram. Int., 2017, vol. 43, no. 16, pp. 14 504–14 510. https://doi.org/10.1016/j.ceramint.2017.07.093

Evstropiev, S.K., Dukelskii K.V., Karavaeva A.V., Vasilyev V.N., Kolobkova E.V., Nikonorov N.V., and Evstropyev, K.S. Transparent bactericidal ZnO nanocoatings, J. Mater. Sci.: Mater. Med., 2017, vol. 28, no. 7, p. 102. https://doi.org/10.1007/s10856-017-5909-4

Thongrom, B., Amornpitoksuk, P., Suwanboon, S., and Baltrusaitis, J., Photocatalytic degradation of dye by Ag/ZnO prepared by reduction of Tollen’s reagent and the ecotoxicity of degraded products, Korean J. Chem. Eng., 2014, vol. 31, no. 4, pp. 587–592. https://doi.org/10.1007/s11814-013-0262-x

Boltenkov, I.S., Kolobkova, E.V., and Evstropiev, S.K., Synthesis and characterization of transparent photocatalytic ZnO–Sm2O3 and ZnO–Er2O3 coatings, J. Photochem. Photobiol., A, 2018, vol. 367, pp. 458–464. https://doi.org/10.1016/j.jphotochem.2018.09.016

Padmavathy, N. and Vijayaraghavan, R., Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study, Sci. Technol. Adv. Mater., 2008, vol. 9, no. 3, p. 035004. https://doi.org/10.1088/1468-6996/9/3/035004

Chen, T.-P., Chang, S.-P., Hung, F.-Y., Chang, S.-J., Hu, Z.-S., and Chen, K.-J., Simple fabrication process for 2D ZnO nanowalls and their potential application as a methane sensor, Sensors, 2013, vol. 13, no. 3, pp. 3941–3950. https://doi.org/10.3390/s130303941

Khomutinnikova, L.L., Meshkovskii, I.K., Evstropiev, S.K., Litvinov, M.Yu., Bykov, E.P., and Plyastsov, S.A., Method of methane detection by a fiber-optic sensor using a photocatalytic nanocomposite ZnO–SnO2–Fe2O3, Opt. Spektrosk., 2023, vol. 131, no. 3, pp. 398–403. https://doi.org/10.61011/EOS.2023.03.56193.4525-23

Patella, B., Moukri, N., Regalbuto, G., Cipollina, C., Pace, E., Di Vincenzo, S., Aiello, G., O’Riordan, A., and Inguanta, R., Electrochemical synthesis of zinc oxide nanostructures on flexible substrate and application as an electrochemical immunoglobulin-G immunosensor, Materials, 2022, vol. 15, no. 3, p. 713. https://doi.org/10.3390/ma15030713

Saratovskii, A.S., Bulyga, D.V., Evstrop’ev, S.K., and Antropova, T.V., Adsorption and photocatalytic activity of the porous glass–ZnO–Ag composite and ZnO–Ag nanopowder, Glass Phys. Chem., 2022, vol. 48, no. 1, pp. 10–17. https://doi.org/10.1134/S1087659622010126

Krasnovsky, A.A., Jr., and Ambartzumian, R.V., Tetracene oxygenation caused by infrared excitation of molecular oxygen in air-saturated solutions: The photoreaction action spectrum and spectroscopic parameters of the 1Δg $$ \to $$ $$^{3}\Sigma _{{\text{g}}}^{ - }$$ transition in oxygen molecules, Chem. Phys. Lett., 2004, vol. 400, nos. 4–6, pp. 531–535. https://doi.org/10.1016/j.cplett.2004.11.00910.1016/j.cplett.2004.11.009

Daimon, T., and Nosaka, Y., Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence, J. Phys. Chem. C, 2007, vol. 111, no. 11, pp. 4420–4424. https://doi.org/10.1021/jp070028y

Kiselev, V.M., Kislyakov, I.M., and Burchinov, A.N., Generation of singlet oxygen on the surface of metal oxides, Opt. Spectrosc., 2016, vol. 120, no. 4, pp. 520–528. https://doi.org/10.1134/S0030400X16040123

Santiago-Gonzalez, B., Monguzzi, A., Caputo, M., Villa, C., Prato, M., Santambrogio, C., Torrente, Y., Meinardi, F., and Brovelli, S., Metal nanoclusters with synergistically engineered optical and buffering activity of intracellular reactive oxygen species by compositional and supramolecular design, Sci. Rep., 2017, vol. 7, p. 5976. https://doi.org/10.1038/s41598-017-05156-9

Kiselev, V.M., Evstrop’ev, S.K., and Starodubtsev, A.M., Photocatalytic degradation and sorption of methylene blue on the surface of metal oxides in aqueous solutions of the dye, Opt. Spectrosc., 2017, vol. 123, no. 5, pp. 809–815. https://doi.org/10.1134/S0030400X17090168

Volynkin, V.M., Danilovich, D.P., Evstrop’ev, S.K., Dukel’skii, K.V., Senchik, K.Yu., Sadovnichii, R.V., Kiselev, V.M., Bagrov, I.V., Saratovskii, A.S., Nikonorov, N.V., and Bezborodkin, P.V., Synthesis of photoactive ZnO–SnO2–Ag(AgCl) nanomaterials for medical and ecological applications and study of their structure and properties, Opt. Spectrosc., 2021, vol. 129, no. 5, pp. 746–753. https://doi.org/10.1134/S0030400X21050180

Tsyganova, T.A., Rakhimova, O.V., Shevchenko, D.S., and Antropova, T.V., Bioactive osmotic filter membrane for water treatment, RF Patent 178126, Byull. Izobret., 2018, no. 9.

Tsyganova, T.A. and Rakhimova, O.V., Method for production of bioactive membrane of osmotic-active filter for water treatment, RF Patent 2756552, Byull. Izobret., 2021, no. 28.

Kreisberg, V.A. and Antropova, T.V., Changing the relation between micro- and mesoporosity in porous glasses: The effect of different factors, Microporous Mesoporous Mater., 2014, vol. 190, pp. 128–138. https://doi.org/10.1016/j.micromeso.2014.02.002

Kuznetsova, A.S., Ermakova, L.E., Anfimova, I.N., and Antropova, T.V., Electrokinetic characteristics of bismuth-containing materials based on porous glasses, Glass Phys. Chem., 2020, vol. 46, no. 4, pp. 290–297. https://doi.org/10.1134/S1087659620030086

Evstropiev, S.K., Nikonorov, N.V., and Saratovskii, A.S., Photodestruction of polyvinylpyrrolidone in aqueous solutions of metal nitrates, Opt. Spectrosc., 2020, vol. 128, no. 11, pp. 1873–1879. https://doi.org/10.1134/S0030400X20110119

Volkova, N.A., Evstrop’ev, S.K., Istomina, O.V., and Kolobkova, E.V., Photolysis of diazo dye in aqueous solutions of metal nitrates, Opt. Spectrosc., 2018, vol. 124, no. 4, pp. 489–493. https://doi.org/10.1134/S0030400X18040197

Evstropiev, S.K., Lesnykh, L.V., Karavaeva, A.V., Nikonorov, N.V., Oreshkina, K.V., Mironov, L.Yu., Maslennikov, S.Yu., Kolobkova, E.V., Vasilyev, V.N., and Bagrov, I.V., Intensification of photodecomposition of organics contaminations by nanostructured ZnO–SnO2 coatings prepared by polymer–salt method, Chem. Eng. Process., 2019, vol. 142, p. 107587. https://doi.org/10.1016/j.cep.2019.107587

Mohamed, R.M., Mkhalid, I.A., Al-Thabaiti, S.A., and Mokhtar, M., Nano Cu metal doped on TiO2–SiO2 nanoparticle catalysts in photocatalytic degradation of direct blue dye, J. Nanosci. Nanotechnol., 2013, vol. 13, no. 7, pp. 4975–4980. https://doi.org/10.1166/jnn.2013.7602

Abbott, L.C., Batchelor, S.N., Jansen, L., Oakes, J., Smith, J.R.L., and Moore J.N., Spectroscopic studies of Direct Blue 1 in solution and on cellulose surfaces: Effects of environment on a bis-azo dye, New J. Chem., 2004, vol. 28, no. 7, pp. 815–821. https://doi.org/10.1039/B401055H

Kiselev, V.M., Kislyakov, I.M., and Burchinov, A.N., Generation of singlet oxygen on the surface of metal oxides, Opt. Spectrosc., 2016, vol. 120, no. 4, pp. 520–528. https://doi.org/10.1134/S0030400X16040123