Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss
Tóm tắt
Từ khóa
Tài liệu tham khảo
Murphy, 2014, Point defects and non-stoichiometry in Li2TiO3, Chem Mater, 26, 1629, 10.1021/cm4038473
Kataoka, 2009, Crystal growth and structure refinement of monoclinic Li2TiO3, Mater Res Bull, 44, 168, 10.1016/j.materresbull.2008.03.015
Kobayashi, 2012, Release kinetics of tritium generated in lithium-enriched Li2+xTiO3 by thermal neutron irradiation, Fusion Eng Des, 87, 471, 10.1016/j.fusengdes.2011.12.020
Dorrian, 1969, Refinement of the structure of Li2TiO3, Mater Res Bull, 4, 179, 10.1016/0025-5408(69)90054-3
Kondo, 2010, Measurement of TPR distribution in natural Li2TiO3/Be assembly with DT neutrons, Fusion Eng Des, 85, 1229, 10.1016/j.fusengdes.2010.03.009
Kulsartov, 2013, Tritium migration in the materials proposed for fusion reactors: Li2TiO3 and beryllium, J Nucl Mater, 442, S740, 10.1016/j.jnucmat.2013.03.036
Avila, 2010, Surface desorption and bulk diffusion models of tritium release from Li2TiO3 and Li2ZrO3 pebbles, J Nucl Mater, 405, 244, 10.1016/j.jnucmat.2010.08.009
Zhang, 2003, Peculiar electrochemical behaviors of (1 −x)LiNiO2-xLi2TiO3 cathode materials prepared by spray drying, J Power Sources, 117, 137
Mohapatra, 2010, Rare earth doped lithium titanate (Li2TiO3) for potential phosphor applications, J Lumin, 130, 2402, 10.1016/j.jlumin.2010.08.001
Chauvaut, 1999, Behaviour of titanium species in molten Li2CO3 +Na2CO3 and Li2CO3 +K2CO3 in the anodic conditions used in molten carbonate fuel cells ☆ : II. Electrochemical intercalation of Li+ in Li2TiO3 at 600 and 650 °C, J Electroanal Chem, 474, 9, 10.1016/S0022-0728(99)00298-3
Zhang, 2010, Synthesis and adsorption property of H2TiO3 type adsorbent, Chin J Nonferrous Met, 20, 1849
Liang, 2009, Microwave dielectric properties of Li2TiO3 ceramics doped with ZnO-B2O3 frit, J Am Ceram Soc, 92, 952, 10.1111/j.1551-2916.2009.02972.x
Pang, 2010, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3-CuO addition, J Am Ceram Soc, 93, 3614, 10.1111/j.1551-2916.2010.04152.x
Zhao, 2005, Microstructure and microwave dielectric properties of Ca[Ti1-x(Mg1/3Nb2/3)x]O3 ceramics, J Eur Ceram Soc, 25, 3347, 10.1016/j.jeurceramsoc.2004.07.036
Wang, 2006, New dielectric materials of xSrTiO3–(1-x)Ca(Mg1/3Nb2/3)O3 ceramic system at microwave frequency, Mater Lett, 60, 1280, 10.1016/j.matlet.2005.11.014
Bagshaw, 2003, Structure–property relations in xCaTiO3–(1−x)SrMg1/3Nb2/3O3 based microwave dielectrics, J Eur Ceram Soc, 23, 2435, 10.1016/S0955-2219(03)00132-8
Chen, 2012, Microwave dielectric properties of Ca4La2Ti5−x(Mg1/3Nb2/3)xO17 ceramics, J Am Ceram Soc, 95, 1394, 10.1111/j.1551-2916.2011.05004.x
Huang, 2001, Improved high Q value of CaTiO3 –Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency, Mater Res Bull, 36, 1645, 10.1016/S0025-5408(01)00652-3
Du, 2018, High-Q microwave ceramics of Li2TiO3 co-doped with magnesium and niobium, J Am Ceram Soc, 101, 4066, 10.1111/jace.15579
Bian, 2018, Structural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1-x(Mg1/3Nb2/3)xO3, J Eur Ceram Soc, 38, 599, 10.1016/j.jeurceramsoc.2017.08.038
Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J Appl Phys, 73, 348, 10.1063/1.353856
Huang, 2012, High- Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications, J Eur Ceram Soc, 32, 3287, 10.1016/j.jeurceramsoc.2012.03.030
Tsuchiya, 2000, Development of wet process with substitution reaction for the mass production of Li2TiO3 pebbles, J Nucl Mater, s283–287, 1380, 10.1016/S0022-3115(00)00099-4
Zhang, 2004, Electrochemical and ex situ XRD investigations on (1−x)LiNiO2·xLiTiO3 (0.05≤ x ≤ 0.5), Electrochim Acta, 49, 3305, 10.1016/j.electacta.2004.03.002
Steiner, 1979, X-ray excited photoelectron spectra of LiNbO3: a quantitative analysis, Z Phys B, 35, 51
Seyama, 1984, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations, J Chem Soc, Faraday Trans, 80, 237, 10.1039/f19848000237
Ikawa, 2010, X-ray photoelectron spectroscopy study of high- and low-temperature forms of zirconium titanate, J Am Ceram Soc, 74, 1459, 10.1111/j.1151-2916.1991.tb04131.x