Influence of (Mg1/3Nb2/3) complex substitutions on crystal structures and microwave dielectric properties of Li2TiO3 ceramics with extreme low loss

Journal of Materiomics - Tập 4 Số 4 - Trang 368-382 - 2018
Huanhuan Guo1, Di Zhou1, Li‐Xia Pang2, Jinzhan Su3
1Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi'an 710049, China
2Micro-optoelectronic Systems Laboratories, Xi’an Technological University, Xi’an 710032, Shaanxi, China
3International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Murphy, 2014, Point defects and non-stoichiometry in Li2TiO3, Chem Mater, 26, 1629, 10.1021/cm4038473

Kataoka, 2009, Crystal growth and structure refinement of monoclinic Li2TiO3, Mater Res Bull, 44, 168, 10.1016/j.materresbull.2008.03.015

Kobayashi, 2012, Release kinetics of tritium generated in lithium-enriched Li2+xTiO3 by thermal neutron irradiation, Fusion Eng Des, 87, 471, 10.1016/j.fusengdes.2011.12.020

Dorrian, 1969, Refinement of the structure of Li2TiO3, Mater Res Bull, 4, 179, 10.1016/0025-5408(69)90054-3

Kondo, 2010, Measurement of TPR distribution in natural Li2TiO3/Be assembly with DT neutrons, Fusion Eng Des, 85, 1229, 10.1016/j.fusengdes.2010.03.009

Kulsartov, 2013, Tritium migration in the materials proposed for fusion reactors: Li2TiO3 and beryllium, J Nucl Mater, 442, S740, 10.1016/j.jnucmat.2013.03.036

Avila, 2010, Surface desorption and bulk diffusion models of tritium release from Li2TiO3 and Li2ZrO3 pebbles, J Nucl Mater, 405, 244, 10.1016/j.jnucmat.2010.08.009

Zhang, 2003, Peculiar electrochemical behaviors of (1 −x)LiNiO2-xLi2TiO3 cathode materials prepared by spray drying, J Power Sources, 117, 137

Mohapatra, 2010, Rare earth doped lithium titanate (Li2TiO3) for potential phosphor applications, J Lumin, 130, 2402, 10.1016/j.jlumin.2010.08.001

Chauvaut, 1999, Behaviour of titanium species in molten Li2CO3 +Na2CO3 and Li2CO3 +K2CO3 in the anodic conditions used in molten carbonate fuel cells ☆ : II. Electrochemical intercalation of Li+ in Li2TiO3 at 600 and 650 °C, J Electroanal Chem, 474, 9, 10.1016/S0022-0728(99)00298-3

Zhang, 2010, Synthesis and adsorption property of H2TiO3 type adsorbent, Chin J Nonferrous Met, 20, 1849

Liang, 2009, Microwave dielectric properties of Li2TiO3 ceramics doped with ZnO-B2O3 frit, J Am Ceram Soc, 92, 952, 10.1111/j.1551-2916.2009.02972.x

Pang, 2010, Microwave dielectric properties of low-firing Li2MO3 (M = Ti, Zr, Sn) ceramics with B2O3-CuO addition, J Am Ceram Soc, 93, 3614, 10.1111/j.1551-2916.2010.04152.x

Zhao, 2005, Microstructure and microwave dielectric properties of Ca[Ti1-x(Mg1/3Nb2/3)x]O3 ceramics, J Eur Ceram Soc, 25, 3347, 10.1016/j.jeurceramsoc.2004.07.036

Wang, 2006, New dielectric materials of xSrTiO3–(1-x)Ca(Mg1/3Nb2/3)O3 ceramic system at microwave frequency, Mater Lett, 60, 1280, 10.1016/j.matlet.2005.11.014

Bagshaw, 2003, Structure–property relations in xCaTiO3–(1−x)SrMg1/3Nb2/3O3 based microwave dielectrics, J Eur Ceram Soc, 23, 2435, 10.1016/S0955-2219(03)00132-8

Chen, 2012, Microwave dielectric properties of Ca4La2Ti5−x(Mg1/3Nb2/3)xO17 ceramics, J Am Ceram Soc, 95, 1394, 10.1111/j.1551-2916.2011.05004.x

Huang, 2001, Improved high Q value of CaTiO3 –Ca(Mg1/3Nb2/3)O3 solid solution with near zero temperature coefficient of resonant frequency, Mater Res Bull, 36, 1645, 10.1016/S0025-5408(01)00652-3

Du, 2018, High-Q microwave ceramics of Li2TiO3 co-doped with magnesium and niobium, J Am Ceram Soc, 101, 4066, 10.1111/jace.15579

Bian, 2018, Structural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1-x(Mg1/3Nb2/3)xO3, J Eur Ceram Soc, 38, 599, 10.1016/j.jeurceramsoc.2017.08.038

Shannon, 1993, Dielectric polarizabilities of ions in oxides and fluorides, J Appl Phys, 73, 348, 10.1063/1.353856

Huang, 2012, High- Q dielectrics using ZnO-modified Li2TiO3 ceramics for microwave applications, J Eur Ceram Soc, 32, 3287, 10.1016/j.jeurceramsoc.2012.03.030

Tsuchiya, 2000, Development of wet process with substitution reaction for the mass production of Li2TiO3 pebbles, J Nucl Mater, s283–287, 1380, 10.1016/S0022-3115(00)00099-4

Zhang, 2004, Electrochemical and ex situ XRD investigations on (1−x)LiNiO2·xLiTiO3 (0.05≤ x ≤ 0.5), Electrochim Acta, 49, 3305, 10.1016/j.electacta.2004.03.002

Steiner, 1979, X-ray excited photoelectron spectra of LiNbO3: a quantitative analysis, Z Phys B, 35, 51

Seyama, 1984, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations, J Chem Soc, Faraday Trans, 80, 237, 10.1039/f19848000237

Ikawa, 2010, X-ray photoelectron spectroscopy study of high- and low-temperature forms of zirconium titanate, J Am Ceram Soc, 74, 1459, 10.1111/j.1151-2916.1991.tb04131.x

Vasquez, 1992, SrTiO3 by XPS, Surf Sci Spectra, 1, 129, 10.1116/1.1247683

Ho, 1987, Ion-beam-induced chemical changes in the oxyanions (Moyn-) and oxides (Mox) where M = chromium, molybdenum, tungsten, vanadium, niobium and tantalum, J Phys Chem, 91, 4779, 10.1021/j100302a027