Influence of Light on Change in Morphophysiological Characteristics of Coccolithophorids Emiliania huxleyi

Pleiades Publishing Ltd - Tập 69 Số 2 - 2022
N. Yu. Shoman1, Е. С. Соломонова1, А. М. Акимов1
1Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Sevastopol, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Paasche, E., A review of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae), with particular reference to growth, coccolith formation, and calcification-photosynthesis interactions, Phycologia, 2001, vol. 40, p. 503. https://doi.org/10.2216/i0031-8884-40-6-503.1

Churilova, T.Ya. and Suslin, V.V.,The reasons of dominance of Emiliania huxleyi in phytoplankton of the deep-water part of the Black Sea in early summer, Ekol. Bezpeka Pribrezhnoi Shel’fovoi Zon Kompl. Nevikoristannya Resur. Shel’fu, 2012, vol. 26, p. 195.

Stel’makh, L.V., Senicheva, M.I., and Babich, I.I., Ecological-physiological principles of water “blooming” caused by Emiliania huxleyi in the Sevastopol Bay, Ekol. Morya, 2009, vol. 77, p. 28.

Kubryakova, E.A., Kubryakov, A.A., and Mikaelyan, A.S., Winter blooms of coccolithophorids in the Black Sea: interannual variability and causing factors, Materialy VI Vserossiiskoi nauchnoi konferentsii molodykh uchenykh “Kompleksnye issledovaniya Mirovogo okeana” (Proc. VI All-Russ. Sci. Conf. of Young Scientists “Complex Studies of the World Ocean”), Moscow: Inst. Okeanol. im. P.P. Shirshova, Ross. Akad. Nauk, 2021, p. 507.

Cokacar,T., Oguz,T., and Kubilay, N., Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea, Deep Sea Res., Part I, 2004, vol. 51, p. 1017. https://doi.org/10.1016/j.dsr.2004.03.007

Klaveness, D.and Paasche, E., Two different Coccolithus huxleyi cell types incapable of coccolith formation, Arch. Microbiol., 1971, vol. 75, p. 382. https://doi.org/10.1007/BF00407700

Klaveness, D.,Coccolithus huxleyi (Lohmann) Kamptner. I. Morphological investigations on the vegetative cell and the process of coccolith formation, Protistologica, 1972, vol. 8, p. 335.

Guillard, R.and Ryther, J., Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran., J. Can. Microbiol., 1962, vol. 8, p. 229. https://doi.org/10.1139/m62-029

Finenko, Z.Z. and Lanskaya, L.A., Growth and rate of algae division in limited water volumes, in Ekologicheskaya fiziologiya morskikh planktonnykh vodoroslei (v usloviyakh kul’tur) (Ecological Physiology of Marine Planktonic Algae (in Vitro Conditions)), Khailov, K.M., Ed., Kiev: Naukova Dumka, 1971, p. 22.

Solomonova, E. and Mukhanov, V., Evaluation of the part of physiologically active cells in accumulative cultures Phaeodactylum tricornutum and Nitzschia sp. using flow cytometry, Morsk. Ekol. Zh., 2011, vol. 10, p. 67.

Solomonova, E. and Akimov, A., The ratio of the dead and living components of suspension in microalgae cultures depending on the growth stage and illumination, Morsk. Ekol. Zh., 2014, vol. 13, p. 73.

Jeffrey, S.W.and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanzen, 1975, vol. 167, p. 191.

Matorin, D.N., Osipov, V.A., Yakovleva, O.V., and Pogosyan, S.I., Opredelenie sostoyaniya rastenii i vodoroslei po fluorestsentsii khlorofilla: uchebno-metodicheskoe posobie (Determination of State of Plantsand Algae by Fluorescence of Chlorophyll: Practical Manual), Moscow: MAKS Press, 2010.

Fichtinger-Schepman, A.M.J., Kamerling, J.P., Versluis, C., and Vliegenthart, J.F., Structural studies of the methylated, acidic polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner, Carbohydr. Res., 1981, vol. 93, p. 105. https://doi.org/10.1016/S0008-6215(00)80756-9

Borman, A.H., de Jong, E.W., Thierry, R., Westbroek, P., Bosch, L., Gruter, M., and Kamerling, J.P., Coccolith-associated polysaccharides from cells of Emiliania huxleyi (Haptophyceae)., J. Phycol., 1987, vol. 23, p. 118. https://doi.org/10.1111/j.1529-8817.1987.tb04433.x

Marsh,M.E., Regulation of CaCO3 formation in coccolithophores, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2003, vol. 136, p. 743. https://doi.org/10.1016/S1096-4959(03)00180-5

Kayano, K., Saruwatari, K., Kogure, T., and Shiraiwa, Y., Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in vitro CaCO3 crystallization, Mar. Biotechnol., 2011, vol. 13, p. 83. https://doi.org/10.1007/s10126-010-9272-4

Takahashi, J., Fujiwara, S., Kikyo, M., Hirokawa, Y., and Tsuzuki, M., Discrimination of the cell surface of the coccolithophorid Pleurochrysis haptonemofera from light scattering and fluorescence after fluorescein-isothiocyanate-labeled lectin staining measured by flow cytometry, Mar. Biotechnol., 2002, vol. 4, p. 94. https://doi.org/10.1007/s10126-001-0083-5

Tang, Y.Z.and Dobbs, F.C., Green autofluorescence in dinoflagellates, diatoms, and other microalgae and its implications for vital staining and morphological studies, Appl. Environ. Microbiol., 2007, vol. 73, p. 2306. https://doi.org/10.1128/AEM.01741-06

Price, P.B.and Bay, R.P., Marine bacteria in deep Arctic and Antarctic ice cores: a proxy for evolution in oceans over 300 million generations, Biogeosciences, 2012, vol. 9, p. 3799. https://doi.org/10.5194/bg-9-3799-2012

Roldán, M., Ascaso, C., and Wierzchos, J., Fluorescent fingerprints of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert, Appl. Environ. Microbiol., 2014, vol. 80, p. 2998. https://doi.org/10.1128/AEM.03428-13

Veldhuis, M.J.W., Kraay, G.W., and Timmermans, K.R., Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth, Eur. J. Phycol., 2001, vol. 36, p. 167. https://doi.org/10.1017/S0967026201003110

Franklin, D.J.and Berges, J.A., Mortality in cultures of the dinoflagellate Amphidinium carterae during culture senescence and darkness, Proc. R. Soc. B, 2004, vol. 271, p. 2099. https://doi.org/10.1098/rspb.2004.2810

Paasche, E., Brubak, S., Skattebøl, S., Young, J.R., and Green, J.C., Growth and calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) at low salinities, Phycologia, 1996, vol. 35, p. 394. https://doi.org/10.2216/i0031-8884-35-5-394.1

Fuertes, M.Á., Flores, J.A., and Sierro, F.J., The use of circularly polarized light for biometry, identification and estimation of mass of coccoliths, Mar. Micropaleontol., 2014, vol. 113, p. 44. https://doi.org/10.1016/j.marmicro.2014.08.007

von Dassow, P., van den Engh, G., Iglesias-Rodriguez, D., and Gittins, J.R., Calcification state of coccolithophores can be assessed by light scatter depolarization measurements with flow cytometry, J. Plankton Res., 2012, vol. 34, p. 1011. https://doi.org/10.1093/plankt/fbs061

Iglesias-Rodriguez, M.D., Halloran, P.R., Rickaby, R.E., HallI. R., Colmenero-Hidalgo, E., Gittins, J.R., Green, D.R.H., Tyrrell, T., Gibbs, S.J., von Dassow, P., Rehm, E., Armbrust, E.V., and Boessenkool, K.P., Phytoplankton calcification in a high-CO2 world, Science, 2008, vol. 320, p. 336. https://doi.org/10.1126/science.1154122

Garde, K.and Cailliau, C., The impact of UV-B radiation and different PAR intensities on growth, uptake of 14C, excretion of DOC, cell volume, and pigmentation in the marine prymnesiophyte, Emiliania huxleyi, J. Exp. Mar. Biol. Ecol., 2000, vol. 247, p. 99. https://doi.org/10.1016/S0022-0981(00)00145-3

Müller, M.N., Antia, A.N., and LaRoche, J., Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi, Limnol. Oceanogr., 2008, vol. 53, p. 506. https://doi.org/10.4319/lo.2008.53.2.0506

Müller, M.N., Trull, T.W., and Hallegraeff, G.M., Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi, ISME J., 2017, vol. 11, p. 1777. https://doi.org/10.1016/S0022-0981(00)00145-3

Müller, M.N., Brandini, F.P., Trull, T.W., and Hallegraeff, G.M., Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo-cell volume, Geobiology, 2021, vol. 19, p. 63. https://doi.org/10.1111/gbi.12414

Aloisi, G., Covariation of metabolic rates and cell size in coccolithophores, Biogeosciences, 2015, vol. 12, p. 4665. https://doi.org/10.5194/bg-12-4665-2015

Fox, E., Meyer, E., Panasiak, N., and Taylor, A.R., Calcein staining as a tool to investigate coccolithophore calcification, Front. Mar. Sci., 2018, vol. 5, p. 326. https://doi.org/10.3389/fmars.2018.00326

Sayanova, O., Haslam, R.P., Calerón, M.V., López, N.R., Worthy, C., Rooks, P., and Napier, J.A., Identification and functional characterization of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi, Phytochemistry, 2011, vol. 72, p. 594.

Nanninga, H.J., Ringenaldus, P., and Westbroek, P., Immunological quantitation of a polysaccharide formed by Emiliania huxleyi, J. Mar. Syst., 1996, vol. 9, p. 67. https://doi.org/10.1016/0924-7963(96)00017-6

Billard, C.and Inouye,I., What is new in coccolithophore biology? in Coccolithophores: From Molecular Processes to Global Impact, Berlin: Springer-Verlag, 2004, p. 1.

Tsuji, Y., Yamazaki, M., Suzuki, I., and Shiraiwa, Y., Quantitative analysis of carbon flow into photosynthetic products functioning as carbon storage in the marine coccolithophore, Emiliania huxleyi, Mar. Biotechnol., 2015, vol. 17, p. 428. https://doi.org/10.1007/s10126-015-9632-1

De Jong, E.W., Bosch, L., and Westbroek, P., Isolation and characterization of a Ca2+ binding polysaccharide associated with coccoliths of Emiliania huxleyi (Lohmann) Kamptner, Eur. J. Biochem., 1976, vol. 70, p. 611. https://doi.org/10.1111/j.1432-1033.1976.tb11052.x

Henriksen, K., Stipp, S.L.S., Young, J.R., and Marsh, M.E., Biological control on calcite crystallization: AFM investigation of coccolith polysaccharide function, Am. Miner., 2004, vol. 89, p. 1709. https://doi.org/10.2138/am-2004-11-1217

van Emburg, P.R., De Jong, E.W., and Daems, W.T., Immunochemical localization of a polysaccharide from biomineral structures (coccoliths) of Emiliania huxleyi, J. Ultrastruct. Mol. Struct. Res., 1986, vol. 94, p. 246. https://doi.org/10.1016/0889-1605(86)90071-6