Influence of Field Effects on the Performance of InGaAs-Based Terahertz Radiation Detectors
Tóm tắt
A detailed electrical characterization of high-performance bow-tie InGaAs-based terahertz detectors is presented along with simulation results. The local surface potential and tunnelling current were scanned over the surfaces of the detectors by means of Kelvin probe force microscopy (KPFM) and scanning tunnelling microscopy (STM), which also enabled the determination of the Fermi level. Current-voltage curves were measured and modelled using the Synopsys Sentaurus TCAD package to gain deeper insight into the processes involved in detector operation. In addition, we performed finite-difference time-domain (FDTD) simulations to reveal features related to changes in the electric field due to the metal detector contacts. The investigation revealed that field-effect-induced conductivity modulation is a possible mechanism contributing to the high sensitivity of the studied detectors.
Tài liệu tham khảo
T. Yasui, A. Nishimura, T. Suzuki, K. Nakayama, S. Okajima, Rev. Sci. Instrum. 77(6), 6102 (2006). doi:10.1063/1.2206770. http://aip.scitation.org/doi/10.1063/1.2206770.
I. Kašalynas, R. Venckevičius, L. Minkevičius, A. Sešek, F. Wahaia, V. Tamošiūnas, B. Voisiat, D. Seliuta, G. Valušis, A. Švigelj, J. Trontelj, Sensors 16(4), 432 (2016). doi:10.3390/s16040432. http://www.mdpi.com/1424-8220/16/4/432.
W. Knap, Y. Deng, S. Rumyantsev, J.Q. Lü, M.S. Shur, C.A. Saylor, L.C. Brunel, Appl. Phys. Lett. 80(18), 3433 (2002). doi:10.1063/1.1473685. http://scitation.aip.org/content/aip/journal/apl/80/18/10.1063/1.1473685.
R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, C. Fenouillet-Beranger, D.K. Maude, S. Rumyantsev, M.S. Shur, Appl. Phys. Lett. 89(25), 253511 (2006). doi:10.1063/1.2410215. http://scitation.aip.org/content/aip/journal/apl/89/25/10.1063/1.2410215.
S. Boppel, A. Lisauskas, M. Mundt, D. Seliuta, L. Minkevicius, I. Kasalynas, G. Valusis, M. Mittendorff, S. Winnerl, V. Krozer, H.G. Roskos, IEEE T. Microw. Theory Techn. 60(12), 3834 (2012). doi:10.1109/TMTT.2012.2221732. http://ieeexplore.ieee.org/document/6353608/.
A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolìvar, D. Glaab, H.G. Roskos, J. Appl. Phys. 105(11), 114511 (2009). doi:10.1063/1.3140611. http://scitation.aip.org/content/aip/journal/jap/105/11/10.1063/1.3140611.
D. Seliuta, E. Širmulis, V. Tamošiūnas, S. Balakauskas, S. Ašmontas, A. Sužiedėlis, J. Gradauskas, G. Valušis, A. Lisauskas, H. Roskos, K. Köhler, Electron. Lett. 40, 631 (2004). doi:10.1049/el:20040412. http://digital-library.theiet.org/content/journals/10.1049/el_20040412.
D. Seliuta, I. Kašalynas, V. Tamošiūnas, S. Balakauskas, Z. Martūnas, S. Ašmontas, G. Valušis, A. Lisauskas, H. Roskos, K. Köhler, Electron. Lett. 42, 825 (2006). http://digital-library.theiet.org/content/journals/10.1049/el_20061224.
I. Kasalynas, D. Seliuta, R. Simniskis, V. Tamosiunas, K. Kohler, G. Valusis, Electron. Lett. 45(16), 833 (2009). doi:10.1049/el.2009.0336.
I. Kasalynas, R. Venckevicius, G. Valusis, IEEE Sens. J. 13(1), 50 (2013). doi:10.1109/JSEN.2012.2223459. http://ieeexplore.ieee.org/document/6328239/.
L. Minkevičius, V. Tamošiūnas, I. Kašalynas, D. Seliuta, G. Valušis, A. Lisauskas, S. Boppel, H.G. Roskos, K. Köhler, Appl. Phys. Lett. 99(13), 131101 (2011). doi:10.1063/1.3641907. http://scitation.aip.org/content/aip/journal/apl/99/13/10.1063/1.3641907.
W. Melitz, J. Shen, A.C. Kummel, S. Lee, Surf. Sci. Rep. 66(1), 1 (2011). doi:10.1016/j.surfrep.2010.10.001. http://www.sciencedirect.com/science/article/pii/S0167572910000841.
C.T. Lee, K.L. Jaw, C.D. Tsai, Solid State Electron. 42(5), 871 (1998). doi:10.1016/S0038-1101(98)00086-0. http://www.sciencedirect.com/science/article/pii/S0038110198000860.
J. Wu, C. Chang, K. Lin, E. Chang, J. Chen, C. Lee, J. Electron. Mater. 24(2), 79 (1995). doi:10.1007/BF02659625.
W.E. Martinez, G. Gregori, T. Mates, Thin Solid Films 518(10), 2585 (2010). doi:10.1016/j.tsf.2009.07.187. http://www.sciencedirect.com/science/article/pii/S0040609009013376.
W. Melitz, J. Shen, S. Lee, J.S. Lee, A.C. Kummel, R. Droopad, T.Y. Edward, J. of Appl. Phys. 108(2), 023711 (2010). doi:10.1063/1.3462440.
I. Kašalynas, R. Venckevičius, D. Seliuta, I. Grigelionis, G. Valušis, J. Appl. Phys. 110(11), 114505 (2011). doi:10.1063/1.3658017. http://scitation.aip.org/content/aip/journal/jap/110/11/10.1063/1.3658017.
V. Balynas, A. Krotkus, A. Stalnionis, A. Gorelionok, N. Shmidt, J. Tellefsen, Appl. Phys. A - Mater. 51(4), 357 (1990). doi:10.1007/BF00324321.
S. Paul, J.B. Roy, P.K. Basu, J. Appl. Phys. 69(2), 827 (1991). doi:10.1063/1.348919. http://scitation.aip.org/content/aip/journal/jap/69/2/10.1063/1.348919.
F. Teppe, W. Knap, D. Veksler, M.S. Shur, A.P. Dmitriev, V.Y. Kachorovskii, S. Rumyantsev, Appl. Phys. Lett. 87(5), 052107 (2005). doi:10.1063/1.2005394. http://scitation.aip.org/content/aip/journal/apl/87/5/10.1063/1.2005394.
Sentaurus device user guide, version k-2015.06, Mountain View, California: Synopsys, Inc., 2015: Chapter 2, section “Physical model parameters”.
D. Chattopadhyay, S.K. Sutradhar, B.R. Nag, J. Phys. C Solid State 14(6), 891 (1981). doi:10.1088/0022-3719/14/6/014. http://stacks.iop.org/0022-3719/14/i=6/a=014.
C. Canali, G. Majni, R. Minder, G. Ottaviani, IEEE T. Electron. Dev. 22(11), 1045 (1975). doi:10.1109/T-ED.1975.18267.
D.M. Caughey, R.E. Thomas, Proceedings of the IEEE 55(12), 2192 (1967). doi:10.1109/PROC.1967.6123. http://ieeexplore.ieee.org/document/1448053/.
J. Marczewski, W. Knap, D. Tomaszewski, M. Zaborowski, P. Zagrajek, J. Appl. Phys. 118(10), 104502 (2015). doi:10.1063/1.4929967. http://scitation.aip.org/content/aip/journal/jap/118/10/10.1063/1.4929967.