Influence of External Input Parameters on Species Production in a Dual-Frequency Capacitively Coupled Radio-frequency Oxygen Plasma

Arabian Journal for Science and Engineering - Tập 45 - Trang 441-453 - 2019
Ziane Kechidi1, Abdelatif Tahraoui2
1Laboratory of Electrical Engineering and Automatics, University of Medea, Medea, Algeria
2Quantum Electronics Laboratory, Faculty of Physics, U.S.T.H.B., Algiers, Algeria

Tóm tắt

The impact of some external input parameters on electron, ozone $$\hbox {O}_3$$, negative $$\hbox {O}^{-}$$ and positive $$\hbox {O}_2^{+}$$ ions, metastable singlet delta-state $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ molecule and atomic oxygen O formation is investigated using a numerical simulation. A one-dimensional, self-consistent fluid model of a dual radio-frequency capacitively coupled discharge operating on pure oxygen is developed to explore the evolution of the species density profiles as functions of gas pressure $$p_g$$, driving high-frequency $$f_{hf}$$, inter-electrode gap distance d and driving voltage waveform $$V_{hf}$$. The proposed model incorporates five main species and 24 dominant reaction channels. Simulation results show that the time-averaged density profiles of electron, ozone $$\hbox {O}_3$$, negative $$\hbox {O}^{-}$$ and positive $$\hbox {O}_2^{+}$$ ions decrease when the gas pressure increases. However, the density of the metastable singlet delta-state $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ molecule and atomic oxygen O increase when the gas pressure increases. The electron density significantly increases with increased $$f_{hf}$$ until a maximum peak is reached at $$40.68~ \hbox {MHz}$$, and then it drops almost linearly at frequencies greater than $$40.68~\hbox {MHz}$$. However, the negative ions $$\hbox {O}^{-}$$ density increases over a range of frequencies from 27.12 to $$67.80~ \hbox {MHz}$$, then it decreases slightly as $$f_{hf}$$ increases further. Therefore, when $$f_{hf}$$ increases, it does enhance the production of the metastable $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ and the oxygen O atoms, whereas the $$\hbox {O}_2^{+}$$ density is decreased. It is also shown that an increase in the inter-electrode gap distance causes a noticeably decrease in the formation of the various species in the discharge. Furthermore, a significant increase in the atomic oxygen O and the metastable singlet delta-state $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ densities is displayed as $$V_{hf}$$ increases. Comparisons are made with recent simulation models and experimental data, and a qualitative agreement is obtained.

Tài liệu tham khảo

Bera, K.; Rauf, S.; Collins, K.: PIC-MCC/fluid hybrid model for low pressure capacitively coupled \(O_2\) plasma. AIP Conf. Proc. 1333(1), 1027–1032 (2011) Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Wong, C.: Dual radio frequency plasma source: understanding via electrical asymmetry effect dual radio frequency plasma source: understanding via electrical asymmetry effect. J. Appl. Phys. 113, 153301 (2013) Lu, Y.; Yan, D.; Chen, Y.: 2-D fluid simulation of dual-frequency capacitively coupled plasma. J. Hydrodyn. Ser. B 21(6), 814–819 (2009) Popović, S.; Rašković, M.; Kuo, S.P.; Vušković, L.: Reactive oxygen emission from microwave discharge plasmas. J. Phys. Conf. Ser. 86, 012013 (2007) Gudmundsson, J.T.; Marakhtanov, A.M.; Patel, K.K.; Gopinath, V.P.; Lieberman, M.A.: On the plasma parameters of a planar inductive oxygen discharge. J. Phys. D Appl. Phys. 33, 1323–1331 (2000) Gudmundsson, J.T.; Kouznetsov, I.G.; Patel, K.K.; Lieberman, M.A.: Electronegativity of low-pressure high-density oxygen discharges. J. Phys. D Appl. Phys. 34(7), 1100 (2001) Parada, S.W.; Pessoa, R.S.; Roberto, M.; Petraconi, G.: Particle-in-cell simulation at low pressure oxygen discharges: comparison with experimental data. ECS Trans. 31(1), 401–408 (2010) Greb, A.; Gibson, A. R.; Niemi, K.; O’Connell, D.; Gans, T.: Influence of surface conditions on plasma dynamics and electron heating in a radio-frequency driven capacitively coupled oxygen plasma,24, 4, 044003. IOP Publishing (2015) Gibson, A. R.; Foucher, M.; Marinov, D.; Chabert, P.; Gans, T.; Kushner, M. J.; Booth, J. P.: The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas, 59, 2, 024004. IOP Publishing (2017) Lee, C.; Graves, D.; A. Lieberman, M.; Hess, D.: Global model of plasma chemistry in a high density oxygen discharge. J. Electrochemi. Soc. 141, 1546–1555 (1994) Roberson, G.; Roberto, M.; Verboncoeur, J.; Verdonck, P.: Global model simulations of low-pressure oxygen discharges. Braz. J. Phys. 37(2A), 457–465 (2007) Gudmundsson, J.T.; Ventéjou, B.: The pressure dependence of the discharge properties in a capacitively coupled oxygen discharge. J. Appl. Phys. 118, 153302 (2015) Lee, J.K.; Babaeva, N.Y.; Kim, H.C.; Manuilenko, O.V.; Shon, Jong Won: Simulation of capacitively coupled single-and dual-frequency RF discharges. IEEE Trans. Plasma Sci. 32(1), 47–53 (2004) Kechidi, Z.; Belbachir, A.H.; Tahraoui, A.: A capacitively coupled discharge operating on pure water vapor and mixture with helium at low and close to atmospheric pressure. Arab. J. Sci. Eng. 43(1), 361–372 (2018) Gans, T.; Schulze, J.; O’Connell, D.; Czarnetzki, U.; Faulkner, R.; Ellingboe, A.R.; Turner, M.M.: Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas. Appl. Phys. Lett. 89, 261502 (2006) Curley, G.A.; Marić, D.; Booth, J.-P.; Corr, C.S.; Chabert, P.; Guillon, J.: Negative ions in single and dual frequency capacitively coupled fluorocarbon plasmas. Plasma Sources Sci. Technol. 16(1), S87–S93 (2007) Voloshin, D.G.; Mankelevich, Y.A.; Proshina, O.V.; Rakhimova, T.V.: Modeling of single and dual frequency capacitive discharge in argon hydrogen mixture-dynamic effects and ion energy distribution functions. Plasma Process Polym 14, 1600119 (2016) Lee, J.K.; Babaeva, N.Y.; Kim, H.C.; Manuilenko, O.V.; Shon, J.W.: Simulation of capacitively coupled single-and dual-frequency RF discharges. IEEE Trans. Plasma Sci. 32(1), 47–53 (2004) Xiang, X.; Ge, H.; Wang, S.; Dai, Z.; Wang, Y.; Zhu, A.: Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: two dimensional simulations. Prog. Nat. Sci. 19, 677–684 (2009) Boyle, P. C.: Modelling of Dual frequency capacitively coupled plasma devices. A thesis for the degree of PHD. School of Physical Sciences, Dublin City University (2004) Lieberman, M.A.; Lichtenberg, A.J.: Principles of Plasma Discharges and Materials Processing. Wiley, Hoboken (2005) Lee, J.K.; Manuilenko, O.V.; Yu Babaeva, N.; Kim, H.C.; Shon, J.W.: Ion energy distribution control in single and dual frequency capacitive plasma sources. Plasma Sources Sci. Technol. 14, 89–97 (2005) Hagelaar, G.J.M.; de Hoog, F.J.; Kroesen, G.M.W.: Boundary conditions in fluid models of gas discharges. Phys. Rev. E 62, 1452–1454 (2000) Yukinori, Sakiyama; David, B.Graves: Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure. Plasma Sources Sci.Technol. 18, 025022 (2009) Gudmundsson, J.T.; Kawamura, E.; Lieberman, M.A.: A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. Plasma Sources Sci. Technol. 22(3), 035011 (2013) Vahedi, V.; Surendra, M.: A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87(1), 179–198 (1995) Lichtenberg, A.J.; Vahedi, V.; Lieberman, M.A.; Rognlien, T.: Modeling electronegative plasma discharges. J. Appl. Phys. 75(5), 2339–2347 (1994) BOLSIG+, user-friendly solver for electron Boltzmann equation. https://fr.lxcat.net/solvers/BolsigPlus/ (2018) UT database. Retrieved on September 13, 2018, http://www.lxcat.net (2018) Stafford, D.S.; Kushner, M.J.: \(O_{2}(a^{1}\Delta _{g})\) production in \(He/ O_2\) mixtures in flowing low pressure plasmas. J. Appl. Phys. 96(5), 2451–2465 (2004) Liu, D.X.; Bruggeman, P.; Iza, F.; Rong, M.Z.; Kong, M.G.: Global model of low-temperature atmospheric-pressure He + \(H_2O\) plasmas. Plasma Sources Sci. Technol. 19, 025018 (2010) Kuntner, N.: Modelling and simulation of electronic excitation in oxygen-helium discharges and plasma-assisted combustion. Institute of Combustion Technology for Aerospace Engineering, University of Stuttgart, Thesis (2018) Waskoenig, J.; Niemi, K.; Knake, N.; Graham, L. M.; Reuter, S.; Schulz-von der Gathen, V.; Gans, T.: Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 19, 045018 (2010) Comsol.multiphysics. http://www.comsol.com/multiphysics/ (2014) Corr, C.S.; Gomez, S.; Graham, W.G.: Discharge kinetics of inductively coupled oxygen plasmas: experiment and model. Plasma Sources Sci. Technol. 21, 055024 (2012) Gudmundsson, J.T.; Snorrason, D.I.; Hannesdottir, H.: The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge. Plasma Sources Sci. Technol. 27(2), 025009 (2018) Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wanga, You-Nian: Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges. J. Appl. Phys. 117, 143301 (2015)