Influence of External Input Parameters on Species Production in a Dual-Frequency Capacitively Coupled Radio-frequency Oxygen Plasma
Tóm tắt
The impact of some external input parameters on electron, ozone $$\hbox {O}_3$$, negative $$\hbox {O}^{-}$$ and positive $$\hbox {O}_2^{+}$$ ions, metastable singlet delta-state $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ molecule and atomic oxygen O formation is investigated using a numerical simulation. A one-dimensional, self-consistent fluid model of a dual radio-frequency capacitively coupled discharge operating on pure oxygen is developed to explore the evolution of the species density profiles as functions of gas pressure $$p_g$$, driving high-frequency $$f_{hf}$$, inter-electrode gap distance d and driving voltage waveform $$V_{hf}$$. The proposed model incorporates five main species and 24 dominant reaction channels. Simulation results show that the time-averaged density profiles of electron, ozone $$\hbox {O}_3$$, negative $$\hbox {O}^{-}$$ and positive $$\hbox {O}_2^{+}$$ ions decrease when the gas pressure increases. However, the density of the metastable singlet delta-state $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ molecule and atomic oxygen O increase when the gas pressure increases. The electron density significantly increases with increased $$f_{hf}$$ until a maximum peak is reached at $$40.68~ \hbox {MHz}$$, and then it drops almost linearly at frequencies greater than $$40.68~\hbox {MHz}$$. However, the negative ions $$\hbox {O}^{-}$$ density increases over a range of frequencies from 27.12 to $$67.80~ \hbox {MHz}$$, then it decreases slightly as $$f_{hf}$$ increases further. Therefore, when $$f_{hf}$$ increases, it does enhance the production of the metastable $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ and the oxygen O atoms, whereas the $$\hbox {O}_2^{+}$$ density is decreased. It is also shown that an increase in the inter-electrode gap distance causes a noticeably decrease in the formation of the various species in the discharge. Furthermore, a significant increase in the atomic oxygen O and the metastable singlet delta-state $$\hbox {O}_{2}(a^{1}\varDelta _{g})$$ densities is displayed as $$V_{hf}$$ increases. Comparisons are made with recent simulation models and experimental data, and a qualitative agreement is obtained.
Tài liệu tham khảo
Bera, K.; Rauf, S.; Collins, K.: PIC-MCC/fluid hybrid model for low pressure capacitively coupled \(O_2\) plasma. AIP Conf. Proc. 1333(1), 1027–1032 (2011)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Wong, C.: Dual radio frequency plasma source: understanding via electrical asymmetry effect dual radio frequency plasma source: understanding via electrical asymmetry effect. J. Appl. Phys. 113, 153301 (2013)
Lu, Y.; Yan, D.; Chen, Y.: 2-D fluid simulation of dual-frequency capacitively coupled plasma. J. Hydrodyn. Ser. B 21(6), 814–819 (2009)
Popović, S.; Rašković, M.; Kuo, S.P.; Vušković, L.: Reactive oxygen emission from microwave discharge plasmas. J. Phys. Conf. Ser. 86, 012013 (2007)
Gudmundsson, J.T.; Marakhtanov, A.M.; Patel, K.K.; Gopinath, V.P.; Lieberman, M.A.: On the plasma parameters of a planar inductive oxygen discharge. J. Phys. D Appl. Phys. 33, 1323–1331 (2000)
Gudmundsson, J.T.; Kouznetsov, I.G.; Patel, K.K.; Lieberman, M.A.: Electronegativity of low-pressure high-density oxygen discharges. J. Phys. D Appl. Phys. 34(7), 1100 (2001)
Parada, S.W.; Pessoa, R.S.; Roberto, M.; Petraconi, G.: Particle-in-cell simulation at low pressure oxygen discharges: comparison with experimental data. ECS Trans. 31(1), 401–408 (2010)
Greb, A.; Gibson, A. R.; Niemi, K.; O’Connell, D.; Gans, T.: Influence of surface conditions on plasma dynamics and electron heating in a radio-frequency driven capacitively coupled oxygen plasma,24, 4, 044003. IOP Publishing (2015)
Gibson, A. R.; Foucher, M.; Marinov, D.; Chabert, P.; Gans, T.; Kushner, M. J.; Booth, J. P.: The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas, 59, 2, 024004. IOP Publishing (2017)
Lee, C.; Graves, D.; A. Lieberman, M.; Hess, D.: Global model of plasma chemistry in a high density oxygen discharge. J. Electrochemi. Soc. 141, 1546–1555 (1994)
Roberson, G.; Roberto, M.; Verboncoeur, J.; Verdonck, P.: Global model simulations of low-pressure oxygen discharges. Braz. J. Phys. 37(2A), 457–465 (2007)
Gudmundsson, J.T.; Ventéjou, B.: The pressure dependence of the discharge properties in a capacitively coupled oxygen discharge. J. Appl. Phys. 118, 153302 (2015)
Lee, J.K.; Babaeva, N.Y.; Kim, H.C.; Manuilenko, O.V.; Shon, Jong Won: Simulation of capacitively coupled single-and dual-frequency RF discharges. IEEE Trans. Plasma Sci. 32(1), 47–53 (2004)
Kechidi, Z.; Belbachir, A.H.; Tahraoui, A.: A capacitively coupled discharge operating on pure water vapor and mixture with helium at low and close to atmospheric pressure. Arab. J. Sci. Eng. 43(1), 361–372 (2018)
Gans, T.; Schulze, J.; O’Connell, D.; Czarnetzki, U.; Faulkner, R.; Ellingboe, A.R.; Turner, M.M.: Frequency coupling in dual frequency capacitively coupled radio-frequency plasmas. Appl. Phys. Lett. 89, 261502 (2006)
Curley, G.A.; Marić, D.; Booth, J.-P.; Corr, C.S.; Chabert, P.; Guillon, J.: Negative ions in single and dual frequency capacitively coupled fluorocarbon plasmas. Plasma Sources Sci. Technol. 16(1), S87–S93 (2007)
Voloshin, D.G.; Mankelevich, Y.A.; Proshina, O.V.; Rakhimova, T.V.: Modeling of single and dual frequency capacitive discharge in argon hydrogen mixture-dynamic effects and ion energy distribution functions. Plasma Process Polym 14, 1600119 (2016)
Lee, J.K.; Babaeva, N.Y.; Kim, H.C.; Manuilenko, O.V.; Shon, J.W.: Simulation of capacitively coupled single-and dual-frequency RF discharges. IEEE Trans. Plasma Sci. 32(1), 47–53 (2004)
Xiang, X.; Ge, H.; Wang, S.; Dai, Z.; Wang, Y.; Zhu, A.: Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: two dimensional simulations. Prog. Nat. Sci. 19, 677–684 (2009)
Boyle, P. C.: Modelling of Dual frequency capacitively coupled plasma devices. A thesis for the degree of PHD. School of Physical Sciences, Dublin City University (2004)
Lieberman, M.A.; Lichtenberg, A.J.: Principles of Plasma Discharges and Materials Processing. Wiley, Hoboken (2005)
Lee, J.K.; Manuilenko, O.V.; Yu Babaeva, N.; Kim, H.C.; Shon, J.W.: Ion energy distribution control in single and dual frequency capacitive plasma sources. Plasma Sources Sci. Technol. 14, 89–97 (2005)
Hagelaar, G.J.M.; de Hoog, F.J.; Kroesen, G.M.W.: Boundary conditions in fluid models of gas discharges. Phys. Rev. E 62, 1452–1454 (2000)
Yukinori, Sakiyama; David, B.Graves: Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure. Plasma Sources Sci.Technol. 18, 025022 (2009)
Gudmundsson, J.T.; Kawamura, E.; Lieberman, M.A.: A benchmark study of a capacitively coupled oxygen discharge of the oopd1 particle-in-cell Monte Carlo code. Plasma Sources Sci. Technol. 22(3), 035011 (2013)
Vahedi, V.; Surendra, M.: A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87(1), 179–198 (1995)
Lichtenberg, A.J.; Vahedi, V.; Lieberman, M.A.; Rognlien, T.: Modeling electronegative plasma discharges. J. Appl. Phys. 75(5), 2339–2347 (1994)
BOLSIG+, user-friendly solver for electron Boltzmann equation. https://fr.lxcat.net/solvers/BolsigPlus/ (2018)
UT database. Retrieved on September 13, 2018, http://www.lxcat.net (2018)
Stafford, D.S.; Kushner, M.J.: \(O_{2}(a^{1}\Delta _{g})\) production in \(He/ O_2\) mixtures in flowing low pressure plasmas. J. Appl. Phys. 96(5), 2451–2465 (2004)
Liu, D.X.; Bruggeman, P.; Iza, F.; Rong, M.Z.; Kong, M.G.: Global model of low-temperature atmospheric-pressure He + \(H_2O\) plasmas. Plasma Sources Sci. Technol. 19, 025018 (2010)
Kuntner, N.: Modelling and simulation of electronic excitation in oxygen-helium discharges and plasma-assisted combustion. Institute of Combustion Technology for Aerospace Engineering, University of Stuttgart, Thesis (2018)
Waskoenig, J.; Niemi, K.; Knake, N.; Graham, L. M.; Reuter, S.; Schulz-von der Gathen, V.; Gans, T.: Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 19, 045018 (2010)
Comsol.multiphysics. http://www.comsol.com/multiphysics/ (2014)
Corr, C.S.; Gomez, S.; Graham, W.G.: Discharge kinetics of inductively coupled oxygen plasmas: experiment and model. Plasma Sources Sci. Technol. 21, 055024 (2012)
Gudmundsson, J.T.; Snorrason, D.I.; Hannesdottir, H.: The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge. Plasma Sources Sci. Technol. 27(2), 025009 (2018)
Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wanga, You-Nian: Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges. J. Appl. Phys. 117, 143301 (2015)