Influence of Demulsifier Aging on Its Performance in Heavy Oil Synthetic Emulsions

Petroleum Chemistry - Trang 1-6 - 2023
Rita de Cassia P. Nunes1, Carla Michele F. Silva1, Paulo Cristiano S. Rocha1, Elizabete F. Lucas1,2
1Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas, Laboratório de Macromoléculas e Coloides na Indústria do Petróleo, Rio de Janeiro, Brazil
2Universidade Federal do Rio de Janeiro, COPPE, Programa de Engenharia Metalúrgica e de Materiais, Laboratório de Aditivos Poliméricos para Produção de Petróleo, Rio de Janeiro, Brazil

Tóm tắt

Flow assurance is one of the main challenges in the oil industry. Many factors can affect the oil fluidity, including the oil °API and the formation of water-in-oil (w/o) emulsions that increase the fluid viscosity. The demulsification process aims to decrease as much as possible the water content in the crude oil. Chemical products known as demulsifiers can be used to aid in this process. In laboratory, the chemicals can be evaluated under temperature and water content conditions similar to those in the oil field. In this work, the effect of demulsifier aging on its performance, simulating oil field storage, was evaluated using synthetic w/o emulsion prepared with a heavy crude oil and brine at 55 000 ppm. The crude oil was characterized and some demulsifier properties were measured along the time. The crude oil was identified as a heavy oil containing 11.6% of asphaltenes, contributing to the w/o emulsion stability. The demulsifier performance increased with aging time, and the results strongly suggested that a mere evaporation of the additive solvent occurs, concentrating its active matter.

Tài liệu tham khảo

Farah, M.A., Petróleo e seus derivados: definição, constituição, aplicação, especificações, caracterização, Rio de Janeiro: LTC, 2012. Gauto, M., Petróleo e Gás – Princípios de exploração, produção e refino, Porto Alegre: Bookman, 2016. Díaz-Prada, C.A., Guarin-Arenas, F., GonzalezBarbosa, J.-E., Garcia-Chinchilla, C.-A., de Jesus Cotes-Leon, E., and Rodriguez-Walteros, C., CTF – Cienc. Tecn. Fut., 2010, vol. 4, no. 1, pp. 63–73. https://doi.org/10.29047/01225383.439 Boyd, J., Parkinson, C., and Sherman, P., J. Colloid and Interface Sci., 1972, vol. 41, no. 2, pp. 359–370. https://doi.org/10.1016/0021-9797(72)90122-1 Friberg, S.E., Emulsions – A Fundamental and Practical Approach, Sjöblom, J., Ed., NATO ASI Series, Dordrecht: Springer, 1992, vol. 363. https://doi.org/10.1007/978-94-011-2460-7_1 Maia Filho, D.C., Ramalho, J.B.V.S., Spinelli, L., and Lucas, E.F., Colloids Surf. A: Physicochem. Eng. Asp., 2012, vol. 396, pp. 208–212. https://doi.org/10.1016/j.colsurfa.2011.12.076 Maia Filho, D.C., Ramalho, J.B.V.S., Lucas, G.M.S., and Lucas, E.F., Colloids Surf. A: Physicochem. Eng. Asp., 2012, vol. 405, pp. 73–78. https://doi.org/10.1016/j.colsurfa.2012.04.041 Goodarzi, F. and Zendehboudi, S., Can. J. Chem. Eng., 2018, vol. 97, no. 1, pp. 281–309. https://doi.org/10.1002/cjce.23336 Yudina, N.V., Loskutova, Y.V., and Nebogina, N.A., Petrol. Chem., 2022, vol. 62, no. 2, pp. 183–190. https://doi.org/10.1134/S0965544122060068 Gafonova, O.V. and Yarranton, H.W., J. Colloid Interface Sci., 2001, vol. 241, no. 2, pp. 469–478. https://doi.org/10.1006/jcis.2001.7731 Nebogina, N.A., Prozorova, I.V., Savinykh, Yu.V., and Yudina, N.V., Petrol. Chem., 2010, vol. 50, no. 2, pp. 158–163. https://doi.org/10.1134/S0965544110020131 Petrov, S.M., Ibragimova, D.A., Abdelsalam, Ya.I.I., and Kayukova, G.P., Petrol. Chem., 2016, vol. 56, no. 1, pp. 21–26. https://doi.org/10.1134/S0965544116010059 Orrego-Ruíz, J.A. and Ruiz, F., CTF – Cienc. Tecn. Fut., 2018, vol. 8, no. 1, pp. 45–52. https://doi.org/10.29047/01225383.90 Gorbacheva, S.N. and Ilyin, S.O., Colloids Surf. A: Physicochem. Eng. Asp., 2021, vol. 618, p. 126442. https://doi.org/10.1016/j.colsurfa.2021.126442 Yudina, N.V., Nebogina, N.A., and Prozorova, I.V., Petrol. Chem., 2021, vol. 61, no. 5, pp. 568–575. https://doi.org/10.1134/S0965544121060050 Glagoleva, O.F. and Kapustin, V.M., Petrol. Chem., 2020, vol. 60, no. 11, pp. 1207–1215. https://doi.org/10.1134/S0965544120110092 Ramalho, J.B.V.S., Lechuga, F.C., and Lucas, E.F., Quim. Nova, 2010, vol. 33, no. 8, pp. 1664–1670. https://doi.org/10.1590/S0100-40422010000800009 Ferreira, B.M.S., Ramalho, J.B.V.S., and Lucas, E.F., Energy Fuels, 2013, vol. 27, no. 2, pp. 615–621. https://doi.org/10.1021/ef301110m Pacheco, V.F., Ferreira, L.S., Lucas, E.F., and Mansur, C.R.E., Energy Fuels, 2015, vol. 5, pp. 1659–1666. https://doi.org/10.1021/ef101769e Hajivand, P. and Vaziri, A., Braz. J. Chem. Eng., 2015, vol. 32, pp. 107–118. https://doi.org/10.1590/0104-6632.20150321s00002755 Kang, W., Yin, X., Yang, H., Zhao, Y., Huang, Z., Hou, X., Sarsenbekuly, B., Zhu, Z., Wang, P., Zhang, X., Geng, J., and Aidarova, S., Colloids Surf. A: Physicochem. Eng. Asp., 2018, vol. 545, pp. 197–204. https://doi.org/10.1016/j.colsurfa.2018.02.055 Saad, M.A., Kamil, M., Abdurahman, N.H., Yunus, R.M., and Awad, O.I., Processes, 2019, vol. 7, p. 470. https://doi.org/10.3390/pr7070470 Society for Testing and Materials, ASTM D4377-00, Standard Test Method for Water in Crude Oils by Potentiometric Karl Fischer Titration. West Conshohocken, 2011. Silva, J.C., Maravilha, T.S.L., Nunes, R.C.P., and Lucas, E.F., J. Mater. Educ., 2019, vol. 41, nos. 5–6, p. 149. Garreto, M.S.E., Gonzalez, G., Ramos, A.C., and Lucas, E.F., Chem. Chem. Technol., 2010, vol. 4, no. 4, pp. 317–323. https://doi.org/10.23939/chcht04.04.317 Vieira, L.C., Buchuid, M.B., and Lucas, E.F., Energy Fuels, 2010, vol. 24, no. 4, pp. 2213–2220. https://doi.org/10.1021/ef900761t Oliveira, L.M.S.L., Nunes, R.C.P., Ribeiro, Y.L.L., Ribeiro, D.M., Coutinho, D.A., Azevedo, J.C.M., and Lucas, E.F., J. Braz. Chem. Soc., 2018, vol. 29, no. 10, pp. 2158–2168. https://doi.org/10.21577/0103-5053.20180092 American Society for Testing and Materials, ASTM D97-17b, Standard Test Method for Pour Point of Petroleum Products. West Conshohocken, 2017. Oliveira, L.M.S.L., Nunes, R.C.P., Pessoa, L.M.B., Reis, L.G., Spinelli, L.S., and Lucas, E.F., J. Appl. Polym. Sci., 2020, vol. 137, p. 48969. https://doi.org/10.1002/app.48969 American Society for Testing and Materials, ASTM D4052, Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. West Conshohocken, 2018. American Society for Testing and Materials, ASTM D664-18e2, Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. West Conshohocken, 2018. Silva, J.C., et al., Tratamento de óleo – desemulsificação, in Procedimentos experimentais de avaliação de aditivos poliméricos para a indústria do petróleo, Lucas, E.F., Ferreira, L.S., Alves, B.F., Eds., Rio de Janeiro: Editora UFRJ, 2022 (on press).