Influence of C-terminal α-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality

Nicholas N. Lyssenko1, Mami Hata2, Padmaja Dhanasekaran1, Margaret Nickel1, David Nguyen1, Palaniappan Sevugan Chetty1, Hiroyuki Saito2, Michael C. Phillips1
1Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA
2Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770-8505, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lund-Katz, 2010, High density lipoprotein structure–function and role in reverse cholesterol transport, Subcell. Biochem., 51, 183, 10.1007/978-90-481-8622-8_7

Rothblat, 2010, High-density lipoprotein heterogeneity and function in reverse cholesterol transport, Curr. Opin. Lipidol., 21, 229, 10.1097/MOL.0b013e328338472d

Oram, 2005, ATP-binding cassette transporter A1: a cell cholesterol exporter that protects against cardiovascular disease, Physiol. Rev., 85, 1343, 10.1152/physrev.00005.2005

Francis, 1995, Defective removal of cellular cholesterol and phospholipids by apolipoprotein A-I in Tangier disease, J. Clin. Invest., 96, 78, 10.1172/JCI118082

Oram, 2000, Tangier disease and ABCA1, Biochim. Biophys. Acta, 1529, 321, 10.1016/S1388-1981(00)00157-8

Lawn, 1999, The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway, J. Clin. Invest., 104, R25, 10.1172/JCI8119

Oram, 2000, ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages, J. Biol. Chem., 275, 34508, 10.1074/jbc.M006738200

Lin, 2000, Apolipoprotein binding to protruding membrane domains during removal of excess cellular cholesterol, Atherosclerosis, 149, 359, 10.1016/S0021-9150(99)00503-1

Vaughan, 2003, ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions, J. Lipid Res., 44, 1373, 10.1194/jlr.M300078-JLR200

Tang, 2009, The cell cholesterol exporter ABCA1 as a protector from cardiovascular disease and diabetes, Biochim. Biophys. Acta, 1791, 563, 10.1016/j.bbalip.2009.03.011

Shao, 2010, Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export, J. Lipid Res., 51, 1849, 10.1194/jlr.M004085

Vedhachalam, 2007, Mechanism of ATP-binding cassette transporter A1-mediated cellular lipid efflux to apolipoprotein A-I and formation of high density lipoprotein particles, J. Biol. Chem., 282, 25123, 10.1074/jbc.M704590200

Gillotte, 1999, Apolipoprotein-mediated plasma membrane microsolubilization, J. Biol. Chem., 274, 2021, 10.1074/jbc.274.4.2021

Duong, 2006, Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I, J. Lipid Res., 47, 832, 10.1194/jlr.M500531-JLR200

Saito, 2004, Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins, Prog. Lipid Res., 43, 350, 10.1016/j.plipres.2004.05.002

Sviridov, 1996, Efflux of cellular cholesterol and phospholipid to apolipoprotein A-I mutants, J. Biol. Chem., 271, 33277, 10.1074/jbc.271.52.33277

Burgess, 1999, Deletion of the C-terminal domain of apolipoprotein A-I impairs cell surface binding and lipid efflux in macrophage, Biochemistry, 38, 14524, 10.1021/bi990930z

Panagotopulos, 2002, The role of apolipoprotein A-I helix 10 in apolipoprotein-mediated cholesterol efflux via the ATP-binding cassette transporter ABCA1, J. Biol. Chem., 277, 39477, 10.1074/jbc.M207005200

Favari, 2002, The C-terminal domain of apolipoprotein A-I is involved in ABCA1-driven phospholipid and cholesterol efflux, Biochem. Biophys. Res. Commun., 299, 801, 10.1016/S0006-291X(02)02745-6

Chroni, 2003, The central helices of apoA-I can promote ATP-binding cassette transporter AI (ABCA1)-mediated lipid efflux, J. Biol. Chem., 278, 6719, 10.1074/jbc.M205232200

Vedhachalam, 2004, Influence of apo A-I structure on the ABCA1-mediated efflux of cellular lipids, J. Biol. Chem., 279, 49931, 10.1074/jbc.M406924200

Tanaka, 2008, Influence of tertiary structure domain properties on the functionality of apolipoprotein A-I, Biochemistry, 47, 2172, 10.1021/bi702332b

Brouillette, 2001, Structural models of human apolipoprotein A-I: a critical analysis and review, Biochim. Biophys. Acta, 1531, 4, 10.1016/S1388-1981(01)00081-6

Vedhachalam, 2010, Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein (HDL) particle size distribution, J. Biol. Chem., 285, 31965, 10.1074/jbc.M110.126292

Rubin, 1991, Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size subclasses, Proc. Natl. Acad. Sci. U. S. A., 88, 434, 10.1073/pnas.88.2.434

Reschly, 2002, Apolipoprotein A-I alpha-helices 7 and 8 modulate high density lipoprotein subclass distribution, J. Biol. Chem., 277, 9645, 10.1074/jbc.M107883200

Carnemolla, 2008, The specific amino acid sequence between helices 7 and 8 influences the binding specificity of human apolipoprotein A-I for high density lipoprotein (HDL) subclasses: a potential for HDL preferential generation, J. Biol. Chem., 283, 15779, 10.1074/jbc.M710244200

Wang, 1996, Conformations of human apolipoprotein E (263–286) and E (267–289) in aqueous solutions of sodium dodecyl sulfate by CD and 1H NMR, Biochemistry, 35, 10358, 10.1021/bi960934t

Datta, 2001, Effects of increasing hydrophobicity on the physical-chemical and biological properties of a class A amphipathic helical peptide, J. Lipid Res., 42, 1096, 10.1016/S0022-2275(20)31599-6

Datta, 2004, Aromatic residue position on the nonpolar face of class A amphipathic helical peptides determines biological activity, J. Biol. Chem., 279, 26509, 10.1074/jbc.M314276200

James, 2009, Aromatic residues in the C-terminal helix of human apoC-I mediate phospholipid interactions and particle morphology, J Lipid Res, 50, 1384, 10.1194/jlr.M800529-JLR200

Handattu, 2007, ApoA-I mimetic peptides with differing ability to inhibit atherosclerosis also exhibit differences in their interactions with membrane bilayers, J. Biol. Chem., 282, 1980, 10.1074/jbc.M606231200

Saito, 2003, Domain structure and lipid interaction in human apolipoproteins A-I and E: a general model, J. Biol. Chem., 278, 23227, 10.1074/jbc.M303365200

Morrow, 1999, Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli, Protein Expr. Purif., 16, 224, 10.1006/prep.1999.1069

Markwell, 1978, A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples, Anal. Biochem., 87, 206, 10.1016/0003-2697(78)90586-9

Tanaka, 2006, Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I, Biochemistry, 45, 10351, 10.1021/bi060726t

Alexander, 2009, Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A-I, J Lipid Res, 50, 1409, 10.1194/jlr.M800578-JLR200

Acharya, 2002, Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism, Biochim. Biophys. Acta, 1584, 9, 10.1016/S1388-1981(02)00263-9

Segall, 2002, Influence of apoE domain structure and polymorphism on the kinetics of phospholipid vesicle solubilization, J. Lipid Res., 43, 1688, 10.1194/jlr.M200157-JLR200

Massey, 2008, Cholesterol is a determinant of the structures of discoidal high density lipoproteins formed by the solubilization of phospholipid membranes by apolipoprotein A-I, Biochim. Biophys. Acta, 1781, 245, 10.1016/j.bbalip.2008.03.003

Oram, 2001, ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol, J. Biol. Chem., 276, 39898, 10.1074/jbc.M106984200

Koyama, 2009, Interaction between the N- and C-terminal domains modulates the stability and lipid binding of apolipoprotein A-I, Biochemistry, 48, 2529, 10.1021/bi802317v

Tanaka, 2011, Influence of N-terminal helix bundle stability on the lipid-binding properties of human apolipoprotein A-I, Biochim Biophys Acta, 1811, 25, 10.1016/j.bbalip.2010.10.003

Pownall, 1987, Lipid-protein interactions and lipoprotein reassembly, 95

Jonas, 1992, Lipid-binding properties of apolipoproteins, 217

Duffy, 2009, Update on strategies to increase HDL quantity and function, Nat. Rev. Cardiol., 6, 455, 10.1038/nrcardio.2009.94

Liu, 2003, Effects of apolipoprotein A-I on ATP-binding cassette transporter A1-mediated efflux of macrophage phospholipid and cholesterol, J. Biol. Chem., 278, 42976, 10.1074/jbc.M308420200

Denis, 2004, Molecular and cellular physiology of apolipoprotein A-I lipidation by the ATP-binding cassette transporter A1 (ABCA1), J. Biol. Chem., 279, 7384, 10.1074/jbc.M306963200

Krimbou, 2005, Biogenesis and speciation of nascent apoA-I-containing particles in various cell lines, J. Lipid Res., 46, 1668, 10.1194/jlr.M500038-JLR200

Mulya, 2007, Minimal lipidation of pre-beta HDL by ABCA1 results in reduced ability to interact with ABCA1, Arterioscler. Thromb. Vasc. Biol., 27, 1828, 10.1161/ATVBAHA.107.142455

Monera, 1994, Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions, Protein Sci., 3, 1984, 10.1002/pro.5560031110

Alexander, 2011, Influence of apolipoprotein A-I domain structure on macrophage reverse cholesterol transport in mice, Arterioscler. Thromb. Vasc. Biol., 31, 320, 10.1161/ATVBAHA.110.216226

Palgunachari, 1996, Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity, Arterioscler. Thromb. Vasc. Biol., 16, 328, 10.1161/01.ATV.16.2.328

Jones, 1992, Computer programs to identify and classify amphipathic alpha helical domains, J. Lipid Res., 33, 287, 10.1016/S0022-2275(20)41549-4