Influence of Batch Mass on Formation of NiTi Shape Memory Alloy Produced by High-Energy Ball Milling
Tóm tắt
Từ khóa
Tài liệu tham khảo
Buehler, 1963, Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi, J. App. Phys., 34, 1475, 10.1063/1.1729603
Otsuka, K., and Wayman, C.M. (1998). Shape Memory Materials, Cambridge University Press.
Duerig, T., Stoeckel, D., and Johnson, D. (2002, January 21–23). SMA: Smart materials for medical applications. Proceedings of the SPIE 4763, European Workshop on Smart Structures in Engineering and Technology, Giens, France.
Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des., 56, 1078, 10.1016/j.matdes.2013.11.084
Zhang, 2012, Grain-size-dependent martensitic transformation in bulk nanocrystalline TiNi under tensile deformation, J. Alloys Comp., 544, 19, 10.1016/j.jallcom.2012.08.014
Gil, 1995, Effect of grain size on the martensitic transformation in NiTi alloy, J. Mater. Sci., 30, 2526, 10.1007/BF00362129
Li, 2020, Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy, Acta Mater., 199, 240, 10.1016/j.actamat.2020.08.039
Waitz, 2004, Martensitic transformation of NiTi nanocrystals embedded in an amorphous matrix, Acta Mater., 52, 5461, 10.1016/j.actamat.2004.08.003
Shi, 2015, Grain size effect on the martensitic transformation temperatures of nanocrystalline NiTi alloy, Smart Mater. Struct., 24, 072001, 10.1088/0964-1726/24/7/072001
Šittner, P., Paidar, V., Heller, L., and Seiner, H. (2009, January 7–11). Nonconventional production technologies for NiTi shape memory alloys. Proceedings of the 8th European Symposium on Martensitic Transformations, Prague, Czech Republic.
Chank, 1994, Solid state amorphization by mechanical alloying–an atomistic model, Acta Mater., 42, 3679, 10.1016/0956-7151(94)90433-2
Igharo, 1985, Compaction and sintering phenomena in titanium—nickel shape memory alloys, Powder Metall., 28, 131, 10.1179/pom.1985.28.3.131
Maziarz, 2004, Mechanically alloyed and hot pressed Ni–49.7Ti alloy showing martensitic transformation, Mater. Sci. Eng. A, 375, 844, 10.1016/j.msea.2003.10.127
Ghadimi, 2012, Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni–Ti elemental powders, Mater. Lett., 80, 181, 10.1016/j.matlet.2012.04.098
Bozorg, S.F.K., and Rabiezadeh, A. (June, January 29). Powder based on nano-crystalline NiTi produced using high energy ball milling and subsequent heat treatment. Proceedings of the International conference on advancement of materials and nanotechnology, Langkawi, Malaysia.
Sadrnezhaad, 2004, Effect of mechanical alloying and sintering on Ni-Ti powders, Mater. Manuf. Proc., 19, 475, 10.1081/AMP-120038656
Salwa, 2020, Crystallization of mechanically alloyed Ni50Ti50 and Ti50Ni25Cu25 shape memory alloys, J. Materi. Eng. Perform., 29, 2848, 10.1007/s11665-020-04820-y
Rietveld, 1967, Line profiles of neutron powder diffraction peaks for structure refinement, Acta Crystallogr., 22, 151, 10.1107/S0365110X67000234
Zak, 2011, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods, Solid State Sci., 13, 251, 10.1016/j.solidstatesciences.2010.11.024
Massalski, B., Okamoto, H., Subramanian, P.R., and Kacprzak, L. (1992). Binary Alloy Phase Diagram, ASM International.
Suryanarayana, 1996, Recent advances in the synthesis of alloy phases by mechanical alloying/milling, Met. Mater., 2, 195, 10.1007/BF03026094
Hellstern, 1989, Stability of CsCl-type intermetallic compounds under ball milling, J. Mater. Res., 4, 1292, 10.1557/JMR.1989.1292
Vemula, 2017, Evaluation of texture, microstructure and microhardness of commercially pure titanium (grade 1/BT 1-00), Int. J. Mech. Eng. Technol., 8, 398
Yang, 2005, Microstructure-microhardness relation of nanostructured Ni produced by high-pressure torsion, Mater. Lett., 59, 3406, 10.1016/j.matlet.2005.05.077