Influence of Aluminum-Containing Slag on Physical and Mechanical Parameters, Phase Composition and Porosity of Acid-Resistant Materials
Tóm tắt
Acid-resistant products with high physical, mechanical, and chemical parameters for firing temperatures in the range 1250 – 1300°C were obtained using slag from the smelting of carbon-free ferrochrome with increased contents of refractory oxides (Al2O3, 57.8 wt.%, CaO 14.9 wt.%, MgO 12.7 wt.%, and Cr2O3 5.6 wt.%) in the production of acid-resistant materials based on non-enriched kaolin clay. The introduction of slag from the smelting of carbon-free ferrochrome into the ceramic compositions contributes to the formation of highly refractory minerals (corundum, chromium oxide, bonite, mayenite, magnesium spinel), increases the mullite content, and reduces the open porosity, thereby strengthening the product.
Tài liệu tham khảo
G. P. Gaprindashvili, M. K. Kekeladze, and L. K. Tedeishvili, “Acid resistant ceramic materials produced using industrial waste products,” Steklo Keram., No. 1, 21 – 23 (1988).
E. S. Abdrakhimova and V. Z. Abdrakhimov, “Effect of nanotechnogenic high-alumina raw materials on the physical and mechanical parameters and phase composition of acid-resistant materials,” Nov. Ogneupory, No. 8, 53 – 60 (2021).
Yu. O. Guseva, T. S. Sycheva, O. S. Motorina, et al., “Formation of slags from metallurgical processing and main areas for using them,” Teor. Tekhnol. Metall. Proizvod., No. 1, 59 – 62 (2013).
E. S. Abdrakhimova and V. Z. Abradkhimov, Physicochemical Processes During Firing of Acid-Resistant Materials [in Russian], Nedra, St. Petersburg, 2003, 273 pp.
I. D. Kashcheev, K. K. Srelov, and P. S. Mamykin, Chemical Technology of Refractories: Study Aide [in Russian], Intermet Inzhiniring, Moscow, 2007, 752 pp.
D. A. Beglov, Ya. N. Pitak, I. A. Ostapenko, and O. M. Andrusenko, “Effect of charge composition on properties of dense fireclay refractories,” Vost.-Evr. Zh. Peredovykh Tekhnol., No. 6, 34 – 38 (2011).
A. S. Ryshchenko, T. D. Ryshchenko, and Ya. N. Pitak, “Mullite-corundum refractories based on synthetic high-clay fireclay,” Vost.-Evr. Zh. Peredovykh Tekhnol., No. 6, 64 – 68 (2011).
E. S. Astapova, E. A. Vanina, and I. A. Golubeva, “Effect of isothermal annealing on mechanical properties and microstructure of high-clay ceramics,” Fiz. Khim. Obrab. Mater., No. 3, 28 – 32 (2007).
P. M. Pletnev, V. M. Pogrebkov, V. I. Vereshchagin, and D. S. Tyul’kin, “Mullite-corundum materials based on mullite binder resistant to high-temperature deformation,” Refract. Ind. Ceram., 58(6), 618 – 625 (2018).
E. S. Abdrakhimova and V. Z. Abdrakhimov, Principles of Technical Ceramics [in Russian], Vostochno-Kazakhstanskii Gos. Tekh. Univ., Ust’-Kamenogorsk, 2001, 161 pp.
I. D. Kashcheev and K. G. Zemlyanoi, “Spinel production,” Refract. Ind. Ceram., 58(2), 162 – 168 (2017).
C. C. Knyazeva, “Structure and physicochemical properties of complex oxides with the spinel structure,” Candidate Dissertation in Chemical Sciences, Nizhnii Novgorod, 2015, 125 pp.
G. Byukhel’, A. Bur, R. Girish, and R. Rechel, “Bonite – A new raw material offering new possibilities for manufacturing refractories,” Nov. Ogneupory, No. 7, 66 – 72 (2006).
A. S. Tolkacheva, S. N. Shkerin, S. V. Plaksin, et al., “Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O,” Zh. Prikl. Khim., 84(6), 881 – 886 (2011).
A. S. Tolkacheva, S. N. Shkerin, I. V. Korzun, et al., “Phase transition in mayenite Ca12Al14O33,” Zh. Neorg. Khim., 57(7), 1089 – 1093 (2012).
E. S. Abdrakhimova and V. Z. Abdrakhimov, “Chemical, phase compositions and porosity structure of the plinth brick of the white tower (Greece) of age greater than 450 yr,” Steklo Keram., No. 4, 40 – 43 (2019).
E. S. Abdrakhimova and V. Z. Abdrakhimov, “Investigation of the porosity structure in the ceramic wall material of the fortress in Girona (Spain),” Steklo Keram., No. 7, 42 – 46 (2020).
V. F. Pavlov, Physicochemical Principles of Firing of Construction Ceramic Items [in Russian], Stroiizdat, Moscow, 1977, 272 pp.