Inflation of fireballs, the gluon wind and the homogeneity of the HBT radii at RHIC
Tóm tắt
We solve analytically the ellipsoidally expanding fireball hydrodynamics with source terms in the momentum and energy equations, using the non-relativistic approximation. We find that energy transport for high-p
tjets of gluons to the medium leads to a transient, exponential inflation of the fireballs created in high energy heavy ion collisions. In this transient, inflatory period, the slopes of the single particle spectra are exponentially increasing, while the HBT radius parameters are exponentially decreasing with time. This effect is shown to be similar to the development of the homogeneity of our Universe due to an inflatory period. Independently of the initial conditions, and the exact value of freeze-out time and temperature, the measurables (single particle spectra, the correlation functions, slope parameters, elliptic flow, HBT radii and cross terms) become time-independent during the late, non-inflatory stages of the expansion, and they satisfy a new kind of scaling laws. If the expansion starts with a transient inflation caused by the gluon wind, it leads naturally to large transverse flows as well as to the simultaneous equality, and scaling behaviour of the HBT radius parameters, R
side≈R
out≈R
long≈t
f
√T
f
/m. With certain relativistic corrections, the scaling limit is 281-2, where m
tis the mean transverse mass of the pair.
Tài liệu tham khảo
X.N. Wang, M. Gyulassy and M. M. Plümer, Phys. Rev. D 51 (1995) 3436 [hep-ph/9408344].
M. Gyulassy and X.N. Wnang, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003].
M. Gyulassy, P. Lévai and I. Vitev, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032].
I. Vitev, M. Gyulassy and P. Lévai, Heavy Ion Phys. 17 (2003) 237.
S.V. Akkelin, T. Csörgő, B. Lukács, Y.M. Sinyukov and M. Weiner, Phys. Lett. B 505 (2001) 64 [hep-ph/0012127].
T. Csörgő, S.V. Akkelin, Y. Hama, B. Lukács and Y.M. Sinyukov, hep-ph/0108067.
T. Csörgő, hep-ph/0111139.
T. Csörgő, L.P. Csernai, Y. Hama and T. Kodama, in preparation.
J. Bondorf, S. Garpman and J. Zimányi, Nucl. Phys. A296 (1978) 320.
J.N. De, S. Garpman, D. Sperber, J. Bondorf and J. Zimányi, Nucl. Phys. A305 (1978) 226.
T. Csörgő, B. Lörstad and J. Zimányi, Phys. Lett. B338 (1994) 134 [nucl-th/9408022].
P. Csizmadia, T. Csörgő and B. Lukács, Phys. Lett. B443 (1998) 21 [nucl-th/9805006].
T. Csörgő, nucl-th/9809011.
J. Helgesson, T. Csörgő, M. Asakawa and B. Lörstad, Phys. Rev. C56 (1997) 2626.
T. Csörgő and B. Lörstad, Phys. Rev. C54 (1996) 1390.
T. Csörgő and B. Lörstad, Nucl. Phys. A590 (1995) 465c.
T. Csörgő, P. Lévai and B. Lörstad, Acta Phys. Slovaca, 46 (1996) 585 [hep-ph/9603373].
S. Pratt, Phys. Rev. D33 (1986) 1314.
G. Bertsch, M. Gong and M. Tohyama, Phys. Rev. C37 (1988) 1896.
D.H. Rischke and M. Gyulassy, Nucl. Phys. A 608 (1996) 479 [nucl-th/9606039].
C.M. Hung and E.V. Shuryak, Phys. Rev. Lett. 75 (1995) 4003 [hep-ph/9412360].
T.S. Biró, Phys. Lett. B 474 (2000) 21 [nucl-th/9911004].
T.S. Biró, Phys. Lett. B. 487 (2000) 133 [nucl-th/0003027].
T. Csörgő, hep-ph/0001233.
T. Humanic, Phys. Rev. C53 (1996) 901; Phys. Rev. C57 (1998) 866; nucl-th/0203004; nucl-th/0205053.
A. Dumitru, nucl-th/0206011.
Zi-Wei Lin, C.M. Ko and Subrata Pal, nucl-th/0204054; C.M. Ko, Z.W. Lin and S. Pal, nucl-th/0205056.