Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells

Gene Therapy - Tập 15 Số 10 - Trang 730-738 - 2008
Erika L. Spaeth1, Ann H. Klopp2, Jennifer L. Dembinski3, Michael Andreeff3, F. Marini3
1Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, UT-M.D. Anderson Cancer Center, Houston, TX 77030, USA.
2Radiation Oncology
3Department of Stem Cell Transplantation and Cellular Therapy, Molecular Hematology and Therapy, UT-M.D. Anderson Cancer Center, Houston, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106: 1755–1761.

Lopez Ponte A, Marais E, Gallay N, Langonné A, Delorme B, Hérault O et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 25: 1737–1745.

Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M . Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of parkinson's disease. Neurosci Lett 2001; 316: 67–70.

Niedzwiedzki T, Dabrowski Z, Miszta H, Pawlikowski M . Bone healing after bone marrow stromal cell transplantation to the bone defect. Biomaterials 1993; 14: 115–121.

Kawada H, Fujita J, Kinjo K, Matsuzaki Y, Tsuma M, Miyatake H et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104: 3581–3587.

Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 2005; 309: 314–317.

Dvorak HF . Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986; 315: 1650–1659.

Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603.

Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007; 14: 894–903.

Hall B, Dembinski J, Sasser AK, Studeny M, Andreeff M, Marini F . Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles. Int J Hematol 2007; 86: 8–16.

Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

Balkwill F . Cancer and the chemokine network. Nat Rev Cancer 2004; 4: 540–550.

Zernecke A, Weber KSC, Erwig LP, Kluth DC, Schröppel B, Rees AJ et al. Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXC chemokine receptor 2 in infiltration during nephrotoxic nephritis. J Immunol 2001; 166: 5755–5762.

Malek S, Kaplan E, Wang JF, Ke Q, Rana JS, Chen Y et al. Successful implantation of intravenously administered stem cells correlates with severity of inflammation in murine myocarditis. Pflug Arch Eur J Physiol 2006; 452: 268–275.

Winner M, Koong AC, Rendon BE, Zundel W, Mitchell RA . Amplification of tumor hypoxic responses by macrophage migration inhibitory factor-dependent hypoxia-inducible factor stabilization. Cancer Res 2007; 67: 186–193.

Ye J, Gao Z, Yin J, He Q . Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293: E1118–E1128.

Pold M, Zhu LX, Sharma S, Burdick MD, Lin Y, Lee PP et al. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer. Cancer Res 2004; 64: 1853–1860.

Ubogu EE, Callahan MK, Tucky BH, Ransohoff RM . Determinants of CCL5-driven mononuclear cell migration across the blood-brain barrier. Implications for therapeutically modulating neuroinflammation. J Neuroimmunol 2006; 179: 132–144.

Gregory JL, Morand EF, McKeown SJ, Ralph JA, Hall P, Yang YH et al. Macrophage migration inhibitory factor induces macrophage recruitment via CC chemokine ligand 2. J Immunol 2006; 177: 8072–8079.

Montecucco F, Bianchi G, Bertolotto M, Viviani G, Dallegri F, Ottonello L . Insulin primes human neutrophils for CCL3-induced migration: crucial role for JNK 1/2. Ann N Y Acad Sci 2006; 1090: 399–407.

Lehman N, Di Fulvio M, McCray N, Campos I, Tabatabaian F, Gomez-Cambronero J . Phagocyte cell migration is mediated by phospholipases PLD1 and PLD2. Blood 2006; 108: 3564–3572.

Laconi E . The evolving concept of tumor microenvironments. BioEssays 2007; 29: 738–744.

Guo HT, Cai CQ, Schroeder RA, Kuo PC . Nitric oxide is necessary for CC-class chemokine expression in endotoxin-stimulated ANA-1 murine macrophages. Immunol Lett 2002; 80: 21–26.

Takahashi F, Takahashi K, Maeda K, Tominaga S, Fukuchi Y . Osteopontin is induced by nitric oxide in RAW 264.7 cells. IUBMB Life 2000; 49: 217–221.

Chamberlain G, Fox J, Ashton B, Middleton J . Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 2007; 25: 2739–2749.

Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester G-R . Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 2007; 101: 135–146.

Allen SJ, Crown SE, Handel TM . Chemokine: Receptor structure, interactions, and antagonism. Annu Rev Immunol 2007; 25: 787–820.

Viola A, Luster AD . Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 2008; 48: 171–197.

Luster AD, Alon R, von Andrian UH . Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 2005; 6: 1182–1190.

Becker MD, O'Rourke LM, Blackman WS, Planck SR, Rosenbaum JT . Reduced leukocyte migration, but normal rolling and arrest, in interleukin-8 receptor homologue knockout mice. Invest Ophthalmol Vis Sci 2000; 41: 1812–1817.

Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K . Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 1993; 365: 654–657.

Leemans JC, te Velde AA, Florquin S, Bennink RJ, de Bruin K, van Lier RA et al. The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J Immunol 2004; 172: 1125–1131.

Galle J, Sittig D, Hanisch I, Wobus M, Wandel E, Loeffler M et al. Individual cell-based models of tumor-environment interactions: multiple effects of CD97 on tumor invasion. Am J Pathol 2006; 169: 1802–1811.

Zabel BA, Zuniga L, Ohyama T, Allen SJ, Cichy J, Handel TM et al. Chemoattractants, extracellular proteases, and the integrated host defense response. Exp Hematol 2006; 34: 1021–1032.

Pisterna GV, Siragusa M . CD44 presence in inflamed pulp tissue. J Endodontics 2007; 33: 1203–1207.

Chaulet H, Desgranges C, Renault MA, Dupuch F, Ezan G, Peiretti F et al. Extracellular nucleotides induce arterial smooth muscle cell migration via osteopontin. Circ Res 2001; 89: 772–778.

Jiang D, Liang J, Noble PW . Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 2007; 23: 435–461.

Simpson MA, Wilson CM, McCarthy JB . Inhibition of prostate tumor cell hyaluronan synthesis impairs subcutaneous growth and vascularization in immunocompromised mice. Am J Pathol 2002; 161: 849–857.

Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F et al. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 2007; 72: 430–441.

Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL . Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med 2002; 195: 1145–1154.

Sutton A, Friand V, Brule-Donneger S, Chaigneau T, Ziol M, Sainte-Catherine O et al. Stromal cell-derived factor-1/chemokine (C-X-C motif) ligand 12 stimulates human hepatoma cell growth, migration, and invasion. Mol Cancer Res 2007; 5: 21–33.

Ip JE, Wu Y, Huang J, Zhang L, Pratt RE, Dzau VJ . Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell 2007; 18: 2873–2882.

Schwabe RF, Bataller R, Brenner DA . Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am J Physiol Gastrointest Liver Physiol 2003; 285: G949–G958.

Novo E, Cannito S, Zamara E, Valfrè di Bonzo L, Caligiuri A, Cravanzola C et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 2007; 170: 1942–1953.

Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by gcsf or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

Shi M, Li J, Liao L, Chen B, Li B, Chen L et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: Role in homing efficiency in NOD/SCID mice. Haematologica 2007; 92: 897–904.

Segers VFM, VanRiet I, Andries LJ, Lemmens K, Demolder MJ, De Becker AJ et al. Mesenchymal stem cell adhesion to cardiac microvascular endothelium: activators and mechanisms. Am J Physiol Heart Circ Physiol 2006; 290: H1370–H1377.

Li Y, Yu X, Lin S, Li X, Zhang S, Song YH . Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun 2007; 356: 780–784.

Mira E, Lacalle RA, González MA, Gómez-Moutón C, Abad JL, Bernad A et al. A role for chemokine receptor transactivation in growth factor signaling. EMBO Rep 2001; 2: 151–156.

Schmidt A, Ladage D, Schinkothe T, Klausmann U, Ulrichs C, Klinz FJ et al. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells 2006; 24: 1750–1758.

Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM et al. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13: 5020–5027.

Wang L, Li Y, Chen J, Gautam SC, Zhang Z, Lu M et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol 2002; 30: 831–836.

Ball SG, Shuttleworth CA, Kielty CM . Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007; 177: 489–500.

Honczarenko M, Le Y, Swierkowski M, Ghiran I, Glodek AM, Silberstein LE . Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 2006; 24: 1030–1041.

Boyd JH, Divangahi M, Yahiaoui L, Gvozdic D, Qureshi S, Petrof BJ . Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-kappaB and calcineurin. Infect Immun 2006; 74: 6829–6838.

West AP, Koblansky AA, Ghosh S . Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol 2006; 22: 409–437.

Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB . Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 2007; 26: 99–107.

Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 2005; 96: 149–156.

Foxman EF, Kunkel EJ, Butcher EC . Integrating conflicting chemotactic signals: the role of memory in leukocyte navigation. J Cell Biol 1999; 147: 577–587.

Tabatabai G, Frank B, Mohle R, Weller M, Wick W . Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-beta-dependent HIF-1alpha-mediated induction of CXCL12. Brain 2006; 129 (Pt 9): 2426–2435.

Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T et al. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med 2005; 202: 739–750.

Rabbany SY, Heissig B, Hattori K, Rafii S . Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 2003; 9: 109–117.

Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S et al. Vascular endothelial growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). Exp Neurol 2006; 199: 301–310.

Kim SK, Kim SU, Park IH, Bang JH, Aboody KS, Wang KC et al. Human neural stem cells target experimental intracranial medulloblastoma and deliver a therapeutic gene leading to tumor regression. Clin Cancer Res 2006; 12: 5550–5556.

Evans CH, Robbins PD, Ghivizzani SC, Wasko MC, Tomaino MM, Kang R et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc Natl Acad Sci USA 2005; 102: 8698–8703.

Fiedler J, Röderer G, Günther KP, Brenner RE . BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem 2002; 87: 305–312.

Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V et al. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 2006; 24: 23–33.