Infinitely Many Solutions for a Nonlinear Elliptic PDE with Multiple Hardy–Sobolev Critical Exponents

Khalid Bouabid1, Rachid Echarghaoui1
1Department of Mathematics, Faculty of Sciences, IBN Tofail University, Kenitra, Morocco

Tóm tắt

In this paper, by an approximating argument, we obtain two disjoint and infinite sets of solutions for the following elliptic equation with multiple Hardy–Sobolev critical exponents $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u=\mu \vert u \vert ^{2^{*}-2} u + \sum _{i=1}^{l} \frac{ \vert u \vert ^{2^{*}(s_{i})-2}u}{ \vert x \vert ^{s_{i}}}+ a(x) \vert u \vert ^{q-2} u &{} \; in \; \Omega , \\ u=0 &{} \; on \; \partial \Omega , \end{array}\right. \end{aligned}$$ where $$\Omega $$ is a smooth bounded domain in $${\mathbb {R}}^{N}$$ with $$0\in \partial \Omega $$ and all the principle curvatures of $$ \partial \Omega $$ at 0 are negative, $$a \in {\mathcal {C}}^{1}({\bar{\Omega }}, \mathbb {R^{*}}^{+}),$$ $$ \mu > 0,$$ $$0 2\frac{q+1}{q -1}.$$ By $$2^{*}:=\frac{2 N}{N-2}$$ and $$2^{*}(s_{i}):=\frac{2 (N-s_{i})}{N-2}$$ we denote the critical Sobolev exponent and Hardy–Sobolev exponents, respectively.

Tài liệu tham khảo

Amann, H.: Lusternik-Schnirelman theory and non-linear eigenvalue problems. Math. Ann. 199, 55–72 (1972). https://doi.org/10.1007/BF01419576 Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973). https://doi.org/10.1016/0022-1236(73)90051-7 Azorero, J.G., Alonso, I.P.: Multiplicity of Solutions for Elliptic Problems with Critical Exponent or with a Nonsymmetric Term. Trans. Am. Math. Soc. 323, 877 (1991). https://doi.org/10.2307/2001562 Bartsch, T., Willem, M.: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123, 3555–3555 (1995). https://doi.org/10.1090/s0002-9939-1995-1301008-2 Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983). https://doi.org/10.1002/cpa.3160360405 Cao, D., Peng, S., Yan, S.: Infinitely many solutions for p-Laplacian equation involving critical Sobolev growth. J. Funct. Anal. 262, 2861–2902 (2012). https://doi.org/10.1016/j.jfa.2012.01.006 Cao, D., Yan, S.: Infinitely many solutions for an elliptic problem involving critical Sobolev growth and Hardy potential. Calc. Var. Partial Differ. Equ. 38, 471–501 (2010). https://doi.org/10.1007/s00526-009-0295-5 Devillanova, G., Solimini, S.: Concentration estimates and multiple solutions to elliptic problems at critical growth. Adv. Differ. Equations. 7, 1257–1280 (2002) Liu, Z., Han, P.: Infinitely many solutions for elliptic systems with critical exponents. J. Math. Anal. Appl. 353, 544–552 (2009). https://doi.org/10.1016/j.jmaa.2008.12.024 Rabinowitz, P.H.: Variational Methods for Nonlinear Eigenvalue Problems, Eig. Non-Linear Probl. (2009) 139-195. https://doi.org/10.1007/978-3-642-10940-9_4 Trudinger, N.: Remarks concerning the conformal deformation of riemannian structures on compact manifolds, Ann. Della Sc. Norm. Super. Di Pisa - Cl. Di Sci. 22 (1968) 265-274 Willem, M.: Minimax Theorems, BirkhÃuser Boston, Boston, MA, 1996, 55-70. https://doi.org/10.1007/978-1-4612-4146-1 Yan, S., Yang, J.: Infinitely many solutions for an elliptic problem involving critical Sobolev and Hardy-Sobolev exponents. Calc. Var. Partial Differ. Equ. 48, 587–610 (2013). https://doi.org/10.1007/s00526-012-0563-7