Infinitely Many Nodal Solutions for Nonlinear Nonhomogeneous Robin Problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Benci V., D’Avenia P., Fortunato D. and Pisani L., Solitons in several space dimensions: Derrick’s problem and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), 297–324.
Cherfils L. and Ilyasov Y., On the stationary solutions of generalized reaction-diffusion equations with p&q${p\&q}$-Laplacian, Commun. Pure Appl. Anal. 4 (2005), 9–22.
Cingolani S. and Degiovanni M., Nontrivial solutions for p-Laplace equations with right-hand side having p-linear growth at infinity, Comm. Partial Differential Equations 30 (2005), 1191–1203.
Clark D. C., A variant of the Lusternik–Schnirelman theory, Indiana Univ. Math. J. 22 (1972), 65–74.
Díaz J. I. and Saá J. E., Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires, C. R. Math. Acad. Sci. Paris Sér. I 305 (1987), 521–524.
Filippakis M. E. and Papageorgiou N. S., Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations 245 (2008), 1883–1922.
Gasiński L. and Papageorgiou N. S., Nonlinear Analysis, Chapman & Hall, Boca Raton, 2006.
Gasiński L. and Papageorgiou N. S., Existence and multiplicity of solutions for Neumann p-Laplacian-type equations, Adv. Nonlinear Stud. 8 (2008), 843–870.
Gasiński L. and Papageorgiou N. S., Multiplicity of positive solutions for eigenvalue problems of (p,2)${(\hskip 0.5ptp,2)}$-equations, Bound. Value Probl. (2012), Article ID 152.
Heinz H.-P., Free Ljusternik–Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), 263–300.
Hu S. and Papageorgiou N. S., Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, 1997.
Kajikiya R., A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal. 225 (2005), 352–370.
Liebermann G. M., The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311–361.
Liu Z. and Wang Z.-Q., Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), 609–629.
Liu Z. and Wang Z.-Q., On Clark’s theorem and its applications to partially sublinear problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 32 (2015), 1015–1037.
Motreanu D., Motreanu V. V. and Papageorgiou N. S., Topological and Variational Methods with Applications to Boundary Value Problems, Springer, New York, 2014.
Mugnai D. and Papageorgiou N. S., Wang’s multiplicity result for superlinear (p,q)${(\hskip 0.5ptp,q)}$-equations without the Ambrosetti–Rabinowitz condition, Trans. Amer. Math. Soc. 366 (2014), 4919–4937.
Papageorgiou N. S. and Rădulescu V. D., Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), 2449–2479.
Papageorgiou N. S. and Rădulescu V. D., Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance, Appl. Math. Optim. 69 (2014), 393–430.
Papageorgiou N. S. and Rădulescu V. D., Nonlinear parametric Robin problems with combined nonlinearities, Adv. Nonlinear Stud. 15 (2015), 715–748.
Papageorgiou N. S. and Rădulescu V. D., Resonant (p,2)${(\hskip 0.5ptp,2)}$-equations with asymmetric reaction, Anal. Appl. (Singap.) 13 (2015), 481–506.
Papageorgiou N. S. and Rădulescu V. D., Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Rev. Mat. Iberoam., to appear.
Papageorgiou N. S. and Rădulescu V. D., Multiplicity theorems for resonant and superlinear nonhomogeneous elliptic equations, Topol. Methods Nonlinear Anal., to appear.
Papageorgiou N. S. and Rădulescu V. D., Nonlinear nonhomogeneous Robin problems with superlinear reaction term, submitted.
Papageorgiou N. S. and Winkert P., On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear. Stud. 14 (2014), 747–773.
Sun M., Zhang M. and Su J., Critical groups at zero and multiple solutions for a quasilinear elliptic equation, J. Math. Anal. Appl. 428 (2015), 696–712.
