Nhiều Giải Pháp Năng Lượng Cao cho Phương Trình Bậc Tư Kiểu Kirchhoff Trong ℝN

Indian Journal of Pure and Applied Mathematics - Tập 51 - Trang 121-133 - 2020
Belal Almuaalemi1, Haibo Chen1, Sofiane Khoutir2
1School of Mathematics and Statistics, Central South University, Changsha, P.R. China
2Faculty of Mathematics, USTHB, Algiers, Algeria

Tóm tắt

Trong bài báo này, chúng tôi nghiên cứu các phương trình elliptic bậc tư của loại Kirchhoff sau đây $$\Delta^2u - (a+b\int_{\mathbb{R}^N} | \triangledown u|^2dx)\Delta u + V(x)u=f(x, u), \;\;x\in\mathbb{R}^N,$$ trong đó Δ2 := Δ(Δ) là toán tử biharmonic, a, b > 0 là các hằng số, V ∈ C(ℝN, ℝ) và f ∈ C(ℝN × ℝ, ℝ). Dưới một số giả thiết thích hợp về V(x) và f(x, u), những kết quả mới về sự tồn tại của vô số nghiệm năng lượng cao cho phương trình trên được thu được thông qua Định lý Đường Diệt Duyệt Đối Xứng.

Từ khóa

#phương trình Kirchhoff #phương trình elliptic #nghiệm năng lượng cao #toán tử biharmonic #Định lý Đường Diệt Duyệt Đối Xứng

Tài liệu tham khảo

G. Kirchhoff, Vorlesungen uber Mechanik, 3rd Edn., Teubner, Leipzig (1983). J. Ball, Initial boundary value problem for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61–90. H. Berger, A new approach to the analysis of large deflections of plates, Appl. Mech., 22 (1955), 465–472. M. Al-Gwaiz, V. Benci, and F. Gazzola, Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal. TMA, 106 (2014), 18–34. P. H. Rabinowitz, Minimax methods in critical point theory with application to differential equations, CBMS Reg. Conf. Ser. Math., Vol 65. Providence, RI: American Mathematical Society, (1986). M. Willem, Minimax theorems, Birkhäauser, Berlin (1996). T. Bartsch, Z. Q. Wang, and M. Willem, The Dirichlet problem for superlinear elliptic equations, In: M. Chipot, P. Quittner (Eds.), Stationary partial differential equations, Vol. 2, Handbook of Differential Equations (Chapter 1), Elsevier, 1-55 (2005). H. Shi and H. Chen, Ground state solutions for asymptotically periodic coupled Kirchhoff-type systems with critical growth, Math. Meth. Appl. Sci., 39 (2016), 2193–2201. Y. Huang and Z. Liu, On a class of Kirchhoff type problems, Arch. Der Math., 102 (2014), 127–139. S. Khoutir and H. Chen, Least energy sign-changing solutions for a class of fourth order Kirchhoff-type equations in ℝN, J. Appl. Math. Comput., 55(1–2) (2017), 25–39. T. Ma, Existence results for a model of nonlinear beam on elastic bearings, Appl. Math. Lett., 13(5) (2000), 11–15. T. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions, Appl. Numer. Math., 47(2) (2003), 189–196. T. Ma, Positive solutions for a nonlocal fourth order equation of Kirchhoff type, Discr. Cont. Dyn. Syst., (2007), 694–703. F. Wang, M. Avci, and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type, J. Math. Anal. Appl., 409 (2014), 140–146. H. Liu and H. Chen, Multiple solutions for an indefinite the nonlinear Kirchhoff-type equation with sign-changing potential, Electron. J. Differen. Equ., 2015(274) (2015), 1–9. L. Xu and H. Chen, Existence and multiplicity of solutions for fourth-order elliptic equations of Kirchhoff type via genus theory, Bound. Value Probl., 1 (2014), 1–12. H. Liu and H. Chen, Multiplicity of nontrivial solutions for a class of nonlinear Kirchhoff-type equations, Bound. Value Probl., 2015 (2015), 1–12. L. Xu and H. Chen, Multiplicity results for fourth order elliptic equations of Kirchhoff-type, Acta Math. Scientia, 35B(5) (2015), 1067–1076. L. Xu and H. Chen, Multiple solutions for the nonhomogeneous fourth order elliptic equations of kirchhoff-type, Taiwan. J. Math., 19 (2015), 1–12. F. Wang and Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl., 2012 (2012), 1–9. W. M. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104 (2001), 343–358. F. Wang, T. An, and Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff type ℝN, Electron. J. Qual. Theory Diff. Equat., 39 (2014), 1–11. X. Wu, Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in ℝN, Nonlinear. Anal. RWA, 12 (2011), 1278–1287. M. Massar, El.M. Hssini, N. Tsouli, and M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci., 8 (2014), 33–51. El. M. Hssini, M. Massar, and N. Tsoul, Solutions to Kirchhoff equations with critical exponent, Arab J. Math. Sci., 22 (2016), 138–149. L. Jeanean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Laze type problem on ℝN, Proc. Roy. Soc. Edindurgh Sect. A, 129 (1999), 787–809. G. M. Figueiredo and R. G. Nascimento, Multiplicity of solutions for equations involving a nonlocal term and biharmonic operator, Electron. J. Differ. Equ., 217 (2016), 1–15.