Infinite families of t-designs from the binomial $$x^{4}+x^{3}$$ over $$\mathrm {GF}(2^n)$$
Tóm tắt
Từ khóa
Tài liệu tham khảo
Assmus, E.F., Jr., Key, J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1994)
Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2015)
Kennedy, G.T., Pless, V.: A coding theoretic approach to extending designs. Discret. Math. 142(1–3), 155–168 (1995)
Kim, J.-L., Pless, V.: Designs in additive codes over $$GF(4)$$. Des. Codes Cryptogr. 30(2), 187–199 (2003)
Tang, C., Ding, C., Xiong, M.: Steiner systems $$S(2,4,\frac{3^ m-1}{2})$$ and $$2$$-designs from ternary linear codes of length $$\frac{3^m-1}{2}$$. Des. Codes Cryptogr. 87, 2793–2811 (2019)
Tang, C., Ding, C., Xiong, M.: Codes, differentially $$\delta $$-uniform functions and t-designs. IEEE Trans. Inf. Theory 66(6), 3691–3703 (2020)
Ding, C.: Infinite families of 3-designs from a type of five-weight code. Des. Codes Cryptogr. 86(3), 703–719 (2018)
Ding, C., Li, C.: Infinite families of 2-designs and 3-designs from linear codes. Discret. Math. 340(10), 2415–2431 (2017)
Du, X., Wang, R., Tang, C., Fan, C.: Infinite families of $$2 $$-designs from a class of cyclic codes with two non-zeros. arXiv:1904.04242
Du, X., Wang, R., Tang, C., Wang, Q.: Infinite families of $$2 $$-designs from two classes of linear codes. arXiv:1903.07459
Du, X., Wang, R., Fan, C.: Infinite families of $$2$$-designs from a class of cyclic codes with two non-zeros. arXiv:1904.04242
Ding, C., Tang, C.: Combinatorial $$t$$-designs from special polynomials. Cryptogr. Commun. 12, 1011–1033 (2020)
Xiang, C., Ling, X., Wang, Q.: Combinatorial t-designs from quadratic functions. Des. Codes Cryptogr. 88(3), 553–565 (2020)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
Reid, C., Rosa, A.: Steiner systems $$S(2,4, v)$$-a survey. Electron. J. Comb. 1000, 1–18 (2010)
Liu, H., Ding, C.: Infinite families of 2-designs from $$GA_1(q)$$ actions. arXiv:1707.02003
Kyureghyan, G., Müller, P., Wang, Q.: On the size of Kakeya sets in finite vector spaces. arXiv:1302.5591