Infinite families of t-designs from the binomial $$x^{4}+x^{3}$$ over $$\mathrm {GF}(2^n)$$

Xin Ling1, Can Xiang2
1School of Mathematics and Information, China West Normal University, Nanchong, China
2College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Assmus, E.F., Jr., Key, J.D.: Designs and Their Codes. Cambridge University Press, Cambridge (1994)

Ding, C.: Codes from Difference Sets. World Scientific, Singapore (2015)

Kennedy, G.T., Pless, V.: A coding theoretic approach to extending designs. Discret. Math. 142(1–3), 155–168 (1995)

Kim, J.-L., Pless, V.: Designs in additive codes over $$GF(4)$$. Des. Codes Cryptogr. 30(2), 187–199 (2003)

Tang, C., Ding, C., Xiong, M.: Steiner systems $$S(2,4,\frac{3^ m-1}{2})$$ and $$2$$-designs from ternary linear codes of length $$\frac{3^m-1}{2}$$. Des. Codes Cryptogr. 87, 2793–2811 (2019)

Tang, C., Ding, C., Xiong, M.: Codes, differentially $$\delta $$-uniform functions and t-designs. IEEE Trans. Inf. Theory 66(6), 3691–3703 (2020)

Ding, C.: Infinite families of 3-designs from a type of five-weight code. Des. Codes Cryptogr. 86(3), 703–719 (2018)

Ding, C., Li, C.: Infinite families of 2-designs and 3-designs from linear codes. Discret. Math. 340(10), 2415–2431 (2017)

Du, X., Wang, R., Tang, C., Fan, C.: Infinite families of $$2 $$-designs from a class of cyclic codes with two non-zeros. arXiv:1904.04242

Du, X., Wang, R., Tang, C., Wang, Q.: Infinite families of $$2 $$-designs from two classes of linear codes. arXiv:1903.07459

Du, X., Wang, R., Fan, C.: Infinite families of $$2$$-designs from a class of cyclic codes with two non-zeros. arXiv:1904.04242

Ding, C., Tang, C.: Combinatorial $$t$$-designs from special polynomials. Cryptogr. Commun. 12, 1011–1033 (2020)

Tang, C.: Infinite families of $$3$$-designs from APN functions. J. Comb. Des. 28(2), 97–117 (2020)

Xiang, C., Ling, X., Wang, Q.: Combinatorial t-designs from quadratic functions. Des. Codes Cryptogr. 88(3), 553–565 (2020)

Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)

Bluher, A.W.: On $$x^{q+1}+ ax+ b$$. Finite Fields Appl. 10(3), 285–305 (2004)

MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

Reid, C., Rosa, A.: Steiner systems $$S(2,4, v)$$-a survey. Electron. J. Comb. 1000, 1–18 (2010)

Beth, T., Jungnickel, D., Lenz, H.: Design Theory. Cambridge University Press, Cambridge (1999)

Liu, H., Ding, C.: Infinite families of 2-designs from $$GA_1(q)$$ actions. arXiv:1707.02003

Kyureghyan, G., Müller, P., Wang, Q.: On the size of Kakeya sets in finite vector spaces. arXiv:1302.5591