Inferring crustal structure in the Aleutian island arc from a sparse wide‐angle seismic data set

American Geophysical Union (AGU) - Tập 5 Số 8 - 2004
Harm J. A. Van Avendonk1, D. J. Shillington2, W. Steven Holbrook2, Matthew J. Hornbach2
1University of Texas at Austin Institute for Geophysics 4412 Spicewood Springs Road Austin Texas 78759 USA
2Department of Geology and Geophysics, University of Wyoming, P.O. Box 3006, Laramie, Wyoming 82071, USA

Tóm tắt

Compressional seismic travel times from a relatively sparse wide‐angle data set hold key information on the structure of a 800 km long section of the central Aleutian arc. Since the source and receiver locations form a swath along the arc crest that is ∼50 km wide, we trace rays in 3‐D for a collection of 8336 seismic refraction and reflection arrivals. We investigate variations in seismic velocity structure parallel to the Aleutian arc, assuming that our result represents average crustal structure across the arc. We explore seismic velocity models that consist of three crustal layers that exhibit smooth variations in structure in the 2‐D vertical plane. We consider the influence of additional constraints and model parameterization in our search for a plausible model for Aleutian arc crust. A tomographic inversion with static corrections for island stations reduces the data variance of a 1‐D starting model by 91%. Our best model has seismic velocities of 6.0–6.5 km/s in the upper crust, 6.5–7.3 km/s in the middle crust, and 7.3–7.7 km/s in the lower crust and a total crustal thickness of 35–37 ± 1 km. A resolution analysis shows that features having a horizontal scale less than 20 km cannot be imaged, but at horizontal length scales of ∼50 km most model features are well resolved. The study indicates that the Aleutian island arc crust is thick compared to other island arcs and strongly stratified and that only the upper 60% of the arc crust has seismic velocities that are comparable to average seismic velocities in continental crust.

Từ khóa


Tài liệu tham khảo

10.1029/93JB03107

10.1098/rsta.1970.0005

10.1029/2002GC000393

10.1029/92JB01464

10.1177/109434209200600103

10.1190/1.1441970

10.1046/j.1365-2478.2000.00211.x

10.1029/JB090iB10p08675

10.1111/j.1365-246X.1979.tb06770.x

10.1029/95JB00259

10.1190/1.1442303

1985 Birkhäuser Boston Cambridge Mass. J. K. Cullum R. A. Willoughby Lanczos Algorithms for Large Symmetric Eigenvalue Computations

10.1111/j.1365-246X.1996.tb01548.x

10.1130/0016-7606(1991)103<0037:HMLABC>2.3.CO;2

10.1130/SPE207-p1

10.1029/92JB02441

10.1029/94JB02461

10.1016/S0012-821X(02)00761-6

10.1046/j.1365-2478.1999.00168.x

10.1029/98JB01499

2003 Kluwer Acad. New York J. A. Goff K. Holliger Heterogeneity in the Crust and Upper Mantle

1996 Johns Hopkins Univ. Press Baltimore Md. G. H. Golub C. F. Van Loan Matrix Computations

10.1146/annurev.ea.14.050186.002221

10.1130/0016-7606(1973)84<2169:CAUMSO>2.0.CO;2

10.1137/1034115

10.1046/j.1365-246X.2003.01822.x

Holbrook W. S., 1992, The Lower Continental Crust, 1

10.1130/0091-7613(1999)027<0031:SACOTA>2.3.CO;2

10.1029/92JB00235

10.1111/j.1365-246X.1995.tb05723.x

10.1029/91JB02858

1993 Chapman and Hall New York H. M. Iyer K. Hirahara Seismic Tomography: Theory and Practice

10.1111/j.1365-246X.1979.tb03777.x

10.1029/2000JB900357

10.1086/628541

10.1130/0091-7613(1985)13<461:ROCCAT>2.0.CO;2

10.1007/BF00311004

10.1029/95JB00924

10.1111/j.1365-246X.1988.tb05898.x

10.1016/S0040-1951(01)00128-7

10.1111/j.1365-246X.1993.tb01177.x

10.1029/2000JB900188

10.1029/2001JB001030

10.6028/jres.045.026

1974 Prentice‐Hall Old Tappan N. J. C. L. Lawson R. J. Hanson Solving Least Squares Problems

10.1029/91JB00113

10.1029/2001JB000230

10.1029/2001JB000163

10.1029/JB088iB04p03439

10.1111/j.1365-246X.1997.tb00596.x

10.1086/628690

1984 Academic San Diego Calif. W. Menke Geophysical Data Analysis: Discrete Inverse Theory

10.1029/94JB00059

10.1029/91JB02150

10.1111/j.1365-246X.1996.tb05295.x

10.1190/1.1442958

Müntener O., 2004, Phase relations of garnet, amphibole and plagioclase in H2O undersaturated andesite liquids at high pressure and implications for the genesis of lower arc crust, Geophys. Res. Abstr., 6, 5183

10.1086/629089

10.1007/s00410-002-0356-7

10.1016/0021-9991(85)90075-0

10.1046/j.1365-246x.1999.00858.x

10.1111/j.1365-246X.1989.tb00519.x

10.1145/355993.356000

10.1137/1.9781611971163

10.1029/JB085iB09p04801

10.1190/1.1442974

1986 Cambridge Univ. Press New York W. H. Press S. A. Teukolsky W. T. Vetterling B. P. Flannery Numerical Recipes in Fortran: The Art of Scientific Computing

10.1137/S1064827593252672

10.1190/1.1443641

10.1038/378571a0

10.1111/j.1365-246X.1990.tb04588.x

10.1190/1.1442293

10.1088/0266-5611/6/1/011

Scholl D. W., 1983, Arc, forearc, and trench sedimentation and tectonics; Amlia corridor of the Aleutian Ridge, AAPG Mem., 34, 413

10.1111/j.1365-246X.1985.tb05143.x

10.1029/2004GC000715

Simon H. D., 1984, The Lanczos algorithm with partial reorthogonalization, Math. Comput., 42, 115, 10.1090/S0025-5718-1984-0725988-X

10.1029/92JB00003

10.1016/S0040-1951(00)00200-6

10.1007/978-94-009-2857-2_8

10.1029/RG018i003p00627

1987 Elsevier Sci. New York A. Tarantola Inverse Problem Theory

10.1029/JB092iB13p13687

10.1029/JB088iB10p08226

10.1007/PL00012555

1977 John Wiley Hoboken N. J. A. N. Tikhonov V. Y. Arsenin Solutions of Ill‐Posed Problems

10.1029/JB094iB12p17497

10.1126/science.271.5253.1257

10.1785/BSSA0770030972

10.1029/98JB00904

10.1190/1.1444955

10.1029/2000JB900459

10.1046/j.1365-246X.1999.00823.x

10.1111/j.1365-246X.1996.tb00010.x

10.1111/j.1365-246X.1989.tb00498.x

10.1046/j.1365-246X.1999.00934.x

10.1029/97JB03536

10.1111/j.1365-246X.1992.tb00836.x

10.1016/S0040-1951(97)00266-7

10.1029/1999GL900545

10.1046/j.1365-246X.2003.01919.x

10.1190/1.1444468

10.1029/98JB01981