Suy diễn áp lực chọn lọc tính chất từ sự bảo tồn dư lượng vị trí

Springer Science and Business Media LLC - Tập 3 - Trang 167-179 - 2012
Rose Hoberman1, Judith Klein-Seetharaman1,2, Roni Rosenfeld1
1School of Computer Science, Carnegie Mellon University, Pittsburgh, USA
2University of Pittsburgh Medical School, Pittsburgh, USA

Tóm tắt

Trong nghiên cứu này, chúng tôi cố gắng hiểu và giải thích áp lực chọn lọc vị trí dựa trên các thuộc tính vật lý và hóa học cơ bản. Chúng tôi đề xuất một tập hợp các giả định ràng buộc về cách mà các áp lực này hành xử, sau đó mô tả quy trình phân tích và giải thích sự phân bố của các dư lượng tại một vị trí cụ thể trong một căn chỉnh chuỗi đa dạng. Khác với các phương pháp trước đây, mô hình của chúng tôi xem xét cả tần suất axit amin và một số lượng lớn các thuộc tính vật lý-hóa học. Bằng cách phân tích từng thuộc tính riêng lẻ, có thể xác định những vị trí mà các mô hình bảo tồn đặc trưng hiện diện. Ngoài ra, mô hình cũng có thể dễ dàng tích hợp các trọng số chuỗi để điều chỉnh cho thiên lệch trong các chuỗi mẫu. Cuối cùng, một bài kiểm tra độ ý nghĩa thống kê được cung cấp cho biện pháp bảo tồn của chúng tôi. Tính khả thi của phương pháp này được chứng minh trên hai protein HIV-1: Nef và Env. Các công cụ, dữ liệu và kết quả được trình bày trong bài báo này có sẵn tại http://flan.blm.cs.cmu.edu.

Từ khóa

#áp lực chọn lọc #tính chất vật lý-hóa học #bảo tồn dư lượng #HIV-1 #Nef #Env

Tài liệu tham khảo

Oliveira L, Paiva P, Paiva A, et al. Identification of functionally conserved residues with the use of entropy-variability plots. Proteins 2003; 52: 544–52 Oliveira L, Paiva P, Paiva A, et al. Sequence analysis reveals how G protein-coupled receptors transduce the signal to the G protein. Proteins 2003; 52: 553–60 Grigoriev I, Kim S. Detection of protein fold similarity based on correlation of amino acid properties. Proc Natl Acad Sci U S A 1999; 96: 14318–23 Mathura V, Schein C, Braun W. Identifying property based sequence motifs in protein families and super-families: application to DNase-1 related endonucleases. Bioinformatics 2003; 19: 1381–90 Ouzounis C, Perez-Irratxeta C, Sander C, et al. Are binding residues conserved? Pac Symp Biocomput 1998;:401–12 Villar H, Kauvar L. Amino acid preferences at protein binding sites. FEBS Lett 1994; 349: 125–30 Lichtarge O, Bourne H, Cohen F. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 1996; 257: 342–58 Pei J, Grishin N. AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 2001; 17: 700–12 Valdar W. Scoring residue conservation. Proteins 2002; 48: 227–41 Shenkin P, Erman B, Mastrandrea L. Information-theoretical entropy as a measure of sequence variability. Proteins 1991; 11: 297–313 Sander C, Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 1991; 9: 56–8 Gerstein M, Altman R. Average core structures and variability measures for protein families: application to the immunoglobulins. J Mol Biol 1995; 251: 161–75 Taylor W. The classification of amino acid conservation. J Theor Biol 1986; 119: 205–18 Zvelebil MJ Barton GJ Taylor WR, et al. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J Mol Biol 1987; 195: 957–61 Sjolander K, Karplus K, Brown M, et al. Dirichlet mixtures: a method for improving detection of weak but significant protein sequence homology. Comput Appl Biosci 1996; 12: 327–45 Koshi J, Mindell D, Goldstein R. Beyond mutation matrices: physical-chemistry based evolutionary models. Genome Inform Ser Workshop Genome Inform 1997; 7: 80–9 Wasserman L. All of statistics. New York: Springer, 2004 Durbin R, Eddy S, Krogh A, et al. Biological sequence analysis. Cambridge: Cambridge University Press, 1998 Thompson J, Higgins D, Gibson T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673–80 Bruno W. Modeling residue usage in aligned protein sequences via maximum likelihood. Mol Biol Evol 1996; 13: 1368–74 Janin J, Wodak S, Levitt M, et al. Conformation of amino acid side-chains in proteins. J Mol Biol 1978; 125: 357–86 Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157: 105–32 Jones DD. Amino acid properties and side-chain orientation in proteins: a cross correlation approach. J Theor Biol 1975; 50: 167–83 Meek JL. Prediction of peptide retention times in high-pressure liquid chromatography on the basis of amino acid composition. Proc Natl Acad Sci USA 1980; 77: 1632–6 Bhaskaran R, Ponnuswamy PK. Positional flexibilities of amino acid residues in globular proteins. Int J Peptide Protein Res 1988; 32: 241–55 Klein P, Kanehisa M, DeLisi C. T Prediction of protein function from sequence properties: discriminant analysis of a data base. Biochim Biophys Acta 1984; 787: 221–6 Wilson KJ, Honegger A, Stotzel RP, et al. The behaviour of peptides on reverse-phase supports during high-pressure liquid chromatography. Biochem J 1981 Oct 1; 199(1): 31–41 Cowan R, Whittaker RG. Hydrophobicity indices for amino acid residues as determined by high-performance liquid chromatography. Pept Res 1990 Mar–Apr; 3(2): 75–80 Guy HR. T Amino acid side-chain partition energies and distribution of residues in soluble proteins. Biophys J 1985; 47: 61–70 Oobatake M, Kubota Y, Ooi T. Optimization of amino acid parameters for correspondence of sequence to tertiary structures of proteuins. Bull Inst Chem Res 1985; 63: 82–94 Vihinen M, Torkkila E, Riikonen P. Accuracy of protein flexibility predictions. Proteins 1994 Jun; 19(2): 141–9 Karplus PA, Schulz GE. Prediction of chain flexibility in proteins. Naturwiss 1985; 72: 212–3 Prabhakaran M. The distribution of physical, chemical and conformational properties in signal and nascent peptides. Biochem J 1990; 269: 691–6 Hutchens JO. Heat capacities, absolute entropies, and entropies of formation of amino acids and related compounds. In: Sober HA, editor. Handbook of biochemistry. 2nd ed. Cleveland (OH): Chemical Rubber Co., 1970: B60–1 Levitt M. A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 1976; 104: 59–107 Oobatake M, Ooi T. An analysis of non-bonded energy of proteins. J Theor Biol 1977; 67: 567–84 Grantham R. Amino acid difference formula to help explain protein evolution. Science 1974; 185: 862–4 Fauchere JL, Pliska V. Hydrophobie parameters pi of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur J Med Chem 1983; 18: 369–75 Harris M. From negative factor to a critical role in virus pathogenesis: the changing fortunes of Nef. J Gen Virol 1996; 77 (Pt 10): 2379–92 Fackler OT, Kienzle N, Kremmer E, et al. Association of human immunodeficiency virus Nef protein with actin is myristoylation dependent and influences its subcellular localization. Eur J Biochem 1997; 247: 843–51 Franchini G, Robert-Guroff M, Ghrayeb J, et al. Cytoplasmic localization of the htlv-iii 3′ orf protein in cultured T-cells. Virology 1986; 155: 5939 Niederman TM, Hastings WE, Ratner L. Myristoylation-enhanced binding of the HIV-1 Nef protein to T-cell skeletal matrix. Virology 1993; 197: 4205 Freund J, Kellner R, Houthaeve T, et al. Stability and proteolytic domains of Nef protein from human immunodeficiency virus (HIV) type 1. Eur J Biochem 1994; 221: 811–9 Grzesiek S, Bax A, Clore GM, et al. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Nat Struct Biol 1996; 3: 340–5 Lee CH, Saksela K, Mirza UA, et al. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Cell 1996; 85: 931–42 Freund J, Kellner R, Konvalinka J, et al. A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. Eur J Biochem 1994; 223: 589–93 Geyer M, Munte CE, Schorr J, et al. Structure of the anchor-domain of myristoylated and non-myristoylated HIV-1 Nef protein. J Mol Biol 1999; 289: 123–38 Geyer M, Peterlin BM. Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. FEBS Lett 2001; 496: 91–5 Geyer M, Fackler OT, Peterlin BM. Structure-function relationships in HIV-1 Nef. EMBO Rep 2001; 2: 580–5 Wang S, York J, Shu W, et al. Interhelical interactions in the gp41 core: implications for activation of HIV-1 membrane fusion. Biochemistry 2002; 41: 7283–92 Kwong PD, Wyatt R, Robinson J, et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393: 648–59 Hartigan JA, Hartigan PM. The dip test of unimodality. Ann Stat 1985; 13: 70–84