Inferential procedures based on the integrated empirical characteristic function
Tóm tắt
We introduce the novel notion of the integrated characteristic function and its empirical counterpart. Some basic properties of these new objects are mentioned and in turn utilized in order to construct new procedures for testing goodness of fit to parametric distributions, for testing symmetry and homogeneity, and for testing independence. Asymptotic results are obtained, while corresponding Monte Carlo results on the finite-sample behavior of the procedures are also included.
Tài liệu tham khảo
Alba Fernández, V., Jiménez-Gamero, M.D., Muñoz Garcia, J.: A test for the two-sample problem based on empirical characteristic functions. Comput. Stat. Data Anal. 52, 3730–3748 (2008)
Allison, J., Santana, L.: On a data dependent choice of the tuning parameter appearing in certain goodness-of-fit tests. J. Stat. Comput. Simul. 85, 3276–3288 (2015)
Balakrishnan, N., Brito, M.R., Quiroz, A.J.: On the goodness-of-fit procedure for normality based on the empirical characteristic function for ranked set sampling data. Metrika 76, 161–177 (2013)
Baringhaus, L., Ebner, B., Henze, N.: The limit distribution of weighted L\(^2\)-goodness-of-fit statistics under fixed alternatives, with applications. Ann. Inst. Stat. Math. 69, 669–995 (2017)
Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, Berlin (1987)
Csörgő, S.: Testing by the empirical characteristic function: a survey. In: Mandl, P., Muskova, M. (eds.) Asymptotic statistics 2: proceedings of the 3rd Prague Symposium on Asymptotic Statistics, pp. 45–56. Amsterdam, Elsevier (1984)
De Groot, M.H.: Optimal Statistical Decisions. McGraw-Hill, New York (1970)
Epps, T.W.: Tests for location-scale families based on the empirical characteristic function. Metrika 62, 99–114 (2005)
Escanciano, J.: On the lack of power of omnibus specification tests. Econom. Theor. 25, 162–194 (2009)
Fan, Y., Lafaye de Micheaux, P., Penev, S., Salopek, D.: Multivariate nonparametric test of independence. J. Multivar. Anal. 153, 189–210 (2017)
Francq, C., Jiménez-Gamero, M.D., Meintanis, S.G.: Tests for sphericity in multivariate GARCH models. J. Econom. 196, 305–319 (2017)
Giacomini, R., Politis, D.N., White, H.: A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators. Econom. Theory 29, 567–589 (2013)
Gneiting, T.: Curiosities of characteristic functions. Expo. Math. 19, 359–363 (2001)
Henze, N., Nikitin, Y.Y.: A new approach to goodness-of-fit testing based on the integrated empirical process. J. Nonparametr. Stat. 12, 391–416 (2000)
Henze, N., Nikitin, Y.Y.: Two-sample tests based on the integrated empirical process. Commun. Stat. Theor. Methods 32, 1767–1788 (2003)
Henze, N., Klar, B., Meintanis, S.G.: Invariant tests for symmetry about an unspecified point based on the empirical characteristic function. J. Multivar. Anal. 87, 275–297 (2003)
Hušková, M., Meintanis, S.G.: Testing procedures based on the empirical characteristic function I: goodness-of-fit, testing for symmetry and independence. Tatra Mt. Math. Publ. 39, 225–233 (2008a)
Hušková, M., Meintanis, S.G.: Testing procedures based on the empirical characteristic function II: \(k\)-sample, change-point problem. Tatra Mt. Math. Publ. 39, 235–243 (2008b)
Hušková, M., Meintanis, S.G.: Tests for the multivariate \(k\)-sample problem based on the empirical characteristic function. J. Nonparametr. Stat. 20, 263–277 (2008c)
Janssen, A.: Global power functions of goodness of fit tests. Ann. Stat. 28, 239–253 (2000)
Kass, R., Goovaerts, M., Dhaene, J., Denuit, M.: Modern Actuarial Risk Theory Using \(\rm{R}\). Kluwer, New York (2002)
Klar, B.: Goodness-of-fit tests for discrete models based on the integrated distribution function. Metrika 49, 53–69 (1999)
Klar, B.: Goodness-of-fit tests for the exponential and the normal distribution based on the integrated distribution function. Ann. Inst. Stat. Math. 53, 338–353 (2001)
Lukacs, E.: Characteristic Functions. Griffin, London (1970)
Meintanis, S.G.: Permutation tests for homogeneity based on the empirical characteristic function. J. Nonparametr. Stat. 17, 583–592 (2005)
Meintanis, S.G.: A review of testing procedures based on the empirical characteristic function. S. Afr. Stat. J. 50, 1–14 (2016)
Meintanis, S.G., Hlávka, Z.: Goodness-of-fit test for bivariate and multivariate skew-normal distributions. Scand. J. Stat. 37, 701–714 (2010)
Meintanis, S.G., Swanepoel, J.W.H.: Bootstrap goodness-of-fit tests with estimated parameters based on empirical transforms. Stat. Probab. Lett. 77, 1004–1013 (2007)
Meintanis, S.G., Ushakov, N.: A probability weighted empirical characteristic function and applications. Stat. Probab. Lett. 108, 52–61 (2016)
Meintanis, S.G., Swanepoel, J., Allison, J.: The probability weighted characteristic function and goodness-of-fit testing. J. Stat. Plan. Inference 146, 122–132 (2014)
Müller, A.: Ordering of risks: a comparative study via stop-loss transforms. Insur. Math. Econom. 17, 215–222 (1996)
Neuhaus, G., Zhu, L.X.: Permutation tests for reflected symmetry. J. Multivar. Anal. 67, 129–153 (1998)
Ngatchou-Wandji, J.: Testing for symmetry in multivariate distributions. Stat. Methodol. 6, 230–250 (2009)
Nikitin, Y.: Asymptotic Efficiency of Nonparametric Tests. Cambridge University Press, New York (1995)
Székely, G.J., Rizzo, M.L.: Energy statistics: a class of statistics based on distances. J. Stat. Plan. Inference 143, 1249–1272 (2013)
Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35, 2769–2794 (2007)
Tenreiro, C.: On the choice of the smoothing parameter for the BHEP goodness-of-fit test. Comput. Stat. Data Anal. 53, 1038–1053 (2009)
Thas, O.: Comparing Distributions. Springer, New York (2010)
Ushakov, N.: Selected Topics in Characteristic Functions. VSP, Utrecht (1999)
Zhu, L.X.: Asymptotics of Goodness-of-Fit Tests for Symmetry. Nonparametric Monte Carlo Tests and Their Applications, Lecture Notes in Statistics, vol. 182, pp. 27–43. Springer, New York (2005)