Inference of protein-protein interaction networks from multiple heterogeneous data
Tóm tắt
Từ khóa
Tài liệu tham khảo
O Kuchaiev, M Rašajski, DJ Higham, N Pržulj, Geometric de-noising of protein-protein interaction networks. PLoS Comput. Biol.5(8), 1000454 (2009).
Y Murakami, K Mizuguchi, Homology-based prediction of interactions between proteins using averaged one-dependence estimators. BMC Bioinforma.15(1), 213 (2014).
L Salwinski, D Eisenberg, Computational methods of analysis of protein-protein interactions. Curr. Opin. Struct. Biol.13(3), 377–382 (2003).
R Craig, L Liao, Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinforma.8(1), 6 (2007).
A Gonzalez, L Liao, Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines. BMC Bioinforma.11(1), 537 (2010).
QC Zhang, D Petrey, L Deng, L Qiang, Y Shi, CA Thu, B Bisikirska, C Lefebvre, D Accili, T Hunter, T Maniatis, A Califano, B Honig, Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature. 490(7421), 556–560 (2012).
R Singh, D Park, J Xu, R Hosur, B Berger, Struct2net: a web service to predict protein-protein interactions using a structure-based approach. Nucleic Acids Res.38(suppl 2), 508–515 (2010).
Y Deng, L Gao, B Wang, ppipre: predicting protein-protein interactions by combining heterogeneous features. BMC Syst. Biol.7(Suppl 2), 8 (2013).
J Sun, Y Sun, G Ding, Q Liu, C Wang, Y He, T Shi, Y Li, Z Zhao, Inpreppi: an integrated evaluation method based on genomic context for predicting protein-protein interactions in prokaryotic genomes. BMC Bioinforma.8(1), 414 (2007).
Y-R Cho, M Mina, Y Lu, N Kwon, P Guzzi, M-finder: uncovering functionally associated proteins from interactome data integrated with go annotations. Proteome Sci.11(Suppl 1), 3 (2013).
S-H Jung, W-H Jang, D-S Han, A computational model for predicting protein interactions based on multidomain collaboration. IEEE/ACM Trans. Comput. Biol. Bioinforma.9(4), 1081–1090 (2012).
H-H Chen, L Gou, XL Zhang, CL Giles, in Proceedings of the 27th Annual ACM Symposium on Applied Computing. Discovering missing links in networks using vertex similarity measures. SAC ’12 (ACMNew York, 2012), pp. 138–143.
C Lei, J Ruan, A novel link prediction algorithm for reconstructing protein-protein interaction networks by topological similarity. Bioinformatics. 29(3), 355–364 (2013).
N Pržulj, Protein-protein interactions: making sense of networks via graph-theoretic modeling. BioEssays. 33(2), 115–123 (2011).
L Page, S Brin, R Motwani, T Winograd, The PageRank Citation Ranking: Bringing Order to the Web (Stanford InfoLab, Stanford, CA, USA, 1999). Previous number = SIDL-WP-1999-0120, http://ilpubs.stanford.edu:8090/422/ .
H Tong, C Faloutsos, J-Y Pan, Random walk with restart: fast solutions and applications. Knowl. Inf. Syst.14(3), 327–346 (2008). doi: 10.1007/s10115-007-0094-2 .
R-H Li, JX Yu, J Liu, in Proceedings of the 20th ACM International Conference on Information and Knowledge Management. Link Prediction: The Power of Maximal Entropy Random Walk (ACMNew York, NY, USA, 2011), pp. 1147–1156. http://doi.acm.org/10.1145/2063576.2063741 .
L Backstrom, J Leskovec, in Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. Supervised random walks: Predicting and recommending links in social networks. WSDM ’11 (ACMNew York, 2011), pp. 635–644.
F Fouss, K Francoisse, L Yen, A Pirotte, M Saerens, An experimental investigation of kernels on graphs for collaborative recommendation and semisupervised classification. Neural Netw.31(0), 53–72 (2012).
CV Cannistraci, G Alanis-Lobato, T Ravasi, Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics. 29(13), 199–209 (2013).
P Symeonidis, N Iakovidou, N Mantas, Y Manolopoulos, From biological to social networks: link prediction based on multi-way spectral clustering. Data Knowl. Eng.87(0), 226–242 (2013).
H Wang, H Huang, C Ding, F Nie, Predicting protein–protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization. J. Comput. Biol.20(4), 344–358 (2013). doi: 10.1089/cmb.2012.0273 .
AK Menon, C Elkan, in Proceedings of the 2011 European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part II. Link prediction via matrix factorization. ECML PKDD’11 (SpringerBerlin, 2011), pp. 437–452.
Y Yamanishi, J-P Vert, M Kanehisa, Protein network inference from multiple genomic data: a supervised approach. Bioinformatics. 20(suppl 1), 363–370 (2004).
L Huang, L Liao, CH Wu, Evolutionary model selection and parameter estimation for protein-protein interaction network based on differential evolution algorithm. IEEE/ACM Trans. Comput. Biol. Bioinforma.12(3), 622–631 (2015).
GRG Lanckriet, T De Bie, N Cristianini, MI Jordan, WS Noble, A statistical framework for genomic data fusion. Bioinformatics. 20(16), 2626–2635 (2004).
T Ito, M Shimbo, T Kudo, Y Matsumoto, in Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. Application of kernels to link analysis. KDD ’05 (ACMNew York, 2005), pp. 586–592.
AJ Smola, R Kondor, 2777, ed. by B Schölkopf, MK Warmuth. Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August 24-27, 2003. Proceedings (Springer Berlin HeidelbergBerlin, Heidelberg, 2003), pp. 144–158, doi: 10.1007/978-3-540-45167-9_12 .
A Mantrach, N van Zeebroeck, P Francq, M Shimbo, H Bersini, M Saerens, Semi-supervised classification and betweenness computation on large, sparse, directed graphs. Pattern Recogn.44(6), 1212–1224 (2011).
J-Y Pan, H-J Yang, C Faloutsos, P Duygulu, in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Automatic multimedia cross-modal correlation discovery. KDD ’04 (ACMNew York, 2004), pp. 653–658.
S Kirkpatrick, CD Gelatt, MP Vecchi, Optimization by simulated annealing. Science. 220(4598), 671–680 (1983).
L Salwinski, CS Miller, AJ Smith, FK Pettit, JU Bowie, D Eisenberg, The database of interacting proteins: 2004 update. Nucleic Acids Res.32(90001), 449–451 (2004).
P Jaccard, Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles. 37:, 547–579 (1901).
SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman, Basic local alignment search tool. J. Mol. Biol.215(3), 403–410 (1990).
ELL Sonnhammer, SR Eddy, R Durbin, Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins Struct. Funct. Bioinforma.28(3), 405–420 (1997).
C Berg, JPR Christensen, P Ressel, Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions, 1st edn., vol. 100 (Springer-Verlag New York, New York, 1984).
L Huang, L Liao, CH Wu, in Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference On. Protein-protein interaction network inference from multiple kernels with optimization based on random walk by linear programming, (2015), pp. 201–207. doi: 10.1109/BIBM.2015.7359681 .
M Deng, S Mehta, F Sun, T Chen, Inferring domain-domain interactions from protein-protein interactions. Genome Res.12(10), 1540–1548 (2002).
Z Itzhaki, E Akiva, Y Altuvia, H Margalit, Evolutionary conservation of domain-domain interactions. Genome Biol.7(12), 125 (2006).
J Park, M Lappe, SA Teichmann, Mapping protein family interactions: intramolecular and intermolecular protein family interaction repertoires in the {PDB} and yeast1. J. Mol. Biol.307(3), 929–938 (2001).