Inference of Wi-Fi busy time fraction based on Markov chains
Tài liệu tham khảo
Cisco, 2020
Adame, 2021, Channel load aware AP / extender selection in home WiFi networks using IEEE 802.11k/v, IEEE Access, 9, 30095, 10.1109/ACCESS.2021.3059473
A. Farshad, M. Lee, M.K. Marina, F. Garcia, On the impact of 802.11n frame aggregation on end-to-end available bandwidth estimation, in: IEEE International Conference on Sensing, Communication, and Networking, SECON, 2014, pp. 108–116.
L. Song, A. Striegel, Leveraging Frame Aggregation for Estimating WiFi Available Bandwidth, in: IEEE International Conference on Sensing, Communication, and Networking, SECON, 2017, pp. 1–9.
IEEE, 2020, Standard for information technology–telecommunications and information exchange between systems - local and metropolitan area networks–specific requirements - part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, 1
N.E.H. Bouzouita, A. Busson, H. Rivano, Inference of Wi-Fi Busy Time Fraction Based on Markov Chains, [Research Report] Inria Lyon. 2022. Hal-03641948, 2022.
B. Melander, M. Bjorkman, P. Gunningberg, A new end-to-end probing and analysis method for estimating bandwidth bottlenecks, in: IEEE Global Telecommunications Conference, Vol. 1, Globecom, 2000, pp. 415–420.
M. Jain, C. Dovrolis, Pathload: A Measurement Tool for End-to-End Available Bandwidth, in: Passive and Active Measurement Workshop, PAM, 2002, pp. 14–25.
V. Ribeiro, R. Riedi, J. Navrátil, L. Cottrell, PathChirp: Efficient Available Bandwidth Estimation for Network Paths, in: Passive and Active Measurement Workshop, PAM, 2003, pp. 1–11.
A. Johnsson, M. Bjorkman, B. Melander, An Analysis of Active End-to-end Bandwidth Measurements in Wireless Networks, in: IEEE/IFIP Workshop on End-to-End Monitoring Techniques and Services, 2006, pp. 74–81.
J. Strauss, D. Katabi, F. Kaashoek, A Measurement Study of Available Bandwidth Estimation Tools, in: ACM SIGCOMM Conference on Internet Measurement, IMC, 2003, pp. 39–44.
Hu, 2003, Evaluation and characterization of available bandwidth probing techniques, IEEE J. Sel. Areas Commun., 21, 879, 10.1109/JSAC.2003.814505
V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hendricks, R. Baraniuk, Multifractal cross-traffic estimation, in: ITC Specialist Seminar on IP Traffic Measurement, Modeling, and Management, 2000, pp. 15–1.
S. Shah, K. Chen, K. Nahrstedt, Available bandwidth estimation in IEEE 802.11-based wireless networks, in: First ISMA/CAIDA Workshop on Bandwidth Estimation, BEst, 2003.
H.K. Lee, V. Hall, K.H. Yum, K.I. Kim, E.J. Kim, Bandwidth Estimation in Wireless Lans for Multimedia Streaming Services, in: IEEE International Conference on Multimedia and Expo, ICME, 2006, pp. 1181–1184.
M. Li, M. Claypool, R. Kinicki, WBest: A bandwidth estimation tool for IEEE 802.11 wireless networks, in: 2008 33rd IEEE Conference on Local Computer Networks, LCN, 2008, pp. 374–381.
N.E.H. Bouzouita, A. Busson, H. Rivano, Analytical study of frame aggregation level to infer IEEE 802.11 network load, in: International Wireless Communications and Mobile Computing, IWCMC, 2020, pp. 952–957.
Rosen, 2014, MCNet: Crowdsourcing wireless performance measurements through the eyes of mobile devices, IEEE Commun. Mag., 52, 86, 10.1109/MCOM.2014.6917407
J. Shi, L. Meng, A. Striegel, C. Qiao, D. Koutsonikolas, G. Challen, A walk on the client side: Monitoring enterprise Wifi networks using smartphone channel scans, in: IEEE International Conference on Computer Communications, IEEE INFOCOM, 2016, pp. 1–9.
A. Farshad, M.K. Marina, F. Garcia, Urban WiFi characterization via mobile crowdsensing, in: IEEE Network Operations and Management Symposium, NOMS, 2014, pp. 1–9.
Mohammad, 2012, 408
Hajlaoui, 2018, An accurate two dimensional Markov chain model for IEEE 802.11n DCF, Wirel. Netw., 24, 1019, 10.1007/s11276-016-1383-z
B.S. Kim, H.Y. Hwang, D.K. Sung, Effect of Frame Aggregation on the Throughput Performance of IEEE 802.11n, in: IEEE Wireless Communications and Networking Conference, WCNC, 2008, pp. 1740–1744.