Inference of Macromolecular Assemblies from Crystalline State

Journal of Molecular Biology - Tập 372 Số 3 - Trang 774-797 - 2007
Eugene Krissinel1, Kim Henrick1
1European Bioinformatics Institute, Genome Campus, Hinxton, Cambridge CB10 1SD, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fermi, 1984, The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution, J. Mol. Biol., 175, 159, 10.1016/0022-2836(84)90472-8

Berg, 2002

Liu, 2002, Light scattering by proteins, 3023

Feigin, 1987

Dass, 2001

Svergun, 2002, Advances in structure analysis using small-angle scattering in solution, Curr. Opin. Struct. Biol., 12, 654, 10.1016/S0959-440X(02)00363-9

Berman, 2000, The Protein Data Bank, Nucleic Acids Res., 28, 235, 10.1093/nar/28.1.235

Cavanagh, 1995

Blundell, 1976

Ponstingl, 2000, Discriminating between homodimeric and monomeric proteins in the crystalline state, Proteins: Struct. Funct. Genet., 41, 47, 10.1002/1097-0134(20001001)41:1<47::AID-PROT80>3.0.CO;2-8

Henrick, 1998, PQS: a protein quaternary structure file server, Trends Biochem. Sci., 23, 358, 10.1016/S0968-0004(98)01253-5

Ponstingl, 2003, Automatic inference of protein quaternary structure from crystals, J. Appl. Crystallogr., 36, 1116, 10.1107/S0021889803012421

Jones, 1996, Principles of protein–protein interactions, Proc. Natl Acad. Sci. USA, 93, 13, 10.1073/pnas.93.1.13

Argos, 1988, An investigation of protein subunit and domain interfaces, Protein Eng., 2, 101, 10.1093/protein/2.2.101

Janin, 1990, The structure of protein–protein recognition sites, J. Biol. Chem., 265, 16027, 10.1016/S0021-9258(17)46181-3

Jones, 1995, Protein-protein interactions: a review of protein dimer structures, Prog. Biophys. Mol. Biol., 63, 31, 10.1016/0079-6107(94)00008-W

Miller, 1989, The structure of interfaces between subunits ofdimeric and tetrameric proteins, Protein Eng., 3, 77, 10.1093/protein/3.2.77

Padlan, 1990, On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands, Proteins: Struct. Funct. Genet., 7, 112, 10.1002/prot.340070203

Glaser, 2006, A method for localizing ligand binding pockets in protein structures, Proteins: Struct. Funct. Genet., 62, 479, 10.1002/prot.20769

Gutteridge, 2005, Understanding nature's catalytic toolkit, Trends Biochem. Sci., 30, 622, 10.1016/j.tibs.2005.09.006

Gutteridge, 2003, Using a neural network and spatial clustering to predict the location of active sites in enzymes, J. Mol. Biol., 330, 719, 10.1016/S0022-2836(03)00515-1

Tsai, 1996, Protein-protein interfaces: architectures and interactions in protein–protein interfaces and in protein cores. Their similarities and differences, Crit. Rev. Biochem. Mol. Biol., 31, 127, 10.3109/10409239609106582

Lo Conte, 1999, The atomic structure of protein–protein recognition sites, J. Mol. Biol., 285, 2177, 10.1006/jmbi.1998.2439

Chakrabarti, 2002, Dissecting protein–protein recognition sites, Proteins: Struct. Funct. Genet., 47, 334, 10.1002/prot.10085

Keskin, 2004, A new, structurally nonredundant, diverse data set of protein interfaces and its implications, Protein Sci., 13, 1043, 10.1110/ps.03484604

Ogmen, 2005, PRISM: protein interactions by structural matching, Nucleic Acids Res., 33, W331, 10.1093/nar/gki585

Preiβner, 1998, Dictionary of interfaces in proteins (DIP). Data bank of complementary molecular surface patches, J. Mol. Biol., 280, 535, 10.1006/jmbi.1998.1878

Gong, 2005, A protein domain interaction interface database: InterPare, BMC Bioinformatics, 6, 207, 10.1186/1471-2105-6-207

Moore, 1972

Baker, 1984, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol., 44, 97, 10.1016/0079-6107(84)90007-5

Janin, 1988, Surface, subunit interfaces and interior of oligomeric proteins, J. Mol. Biol., 204, 155, 10.1016/0022-2836(88)90606-7

Horton, 1992, Calculation of the free energy of association for protein complexes, Protein Sci., 1, 169, 10.1002/pro.5560010117

Janin, 1995, Protein–protein interaction at crystal contacts, Proteins: Struct. Funct. Genet., 23, 580, 10.1002/prot.340230413

Hermann, 1972, Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water with solvent cavity surface area, J. Phys. Chem., 76, 2754, 10.1021/j100663a023

Amidon, 1975, Solubility of nonelectrolytes in polar solvents. V. Estimation of the solubility of aliphatic monofunctional compounds in water using a molecular surface area approach, J. Phys. Chem., 79, 2239, 10.1021/j100588a008

Floris, 1989, Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation, J. Comp. Chem., 10, 616, 10.1002/jcc.540100504

Born, 1920, Volumes and heats of hydration of ions, Z. Phys., 1, 45, 10.1007/BF01881023

You, 1995, Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility, Biophys. J., 69, 1721, 10.1016/S0006-3495(95)80042-1

McDonald, 1994, Satisfying hydrogen bonding potential in proteins, J. Mol. Biol., 238, 777, 10.1006/jmbi.1994.1334

Bahadur, 2003, Dissecting subunit interfaces in homodimeric proteins, Proteins: Struct. Funct. Genet., 53, 708, 10.1002/prot.10461

Xu, 1997, Hydrogen bonds and salt bridges across protein–protein interfaces, Protein Eng., 10, 999, 10.1093/protein/10.9.999

Pace, 1996, Forces contributing to the conformational stability of proteins, FASEB J., 10, 75, 10.1096/fasebj.10.1.8566551

Fersht, 1987, The hydrogen bond in molecular recognition, Trends Biochem. Sci., 12, 3214, 10.1016/0968-0004(87)90146-0

Horovitz, 1990, Strength and co-operativity of contributions of surface salt bridges to protein stability, J. Mol. Biol., 216, 1031, 10.1016/S0022-2836(99)80018-7

Akke, 1990, Protein stability and electrostatic interactions between solvent exposed charged side chains, Proteins: Struct. Funct. Genet., 8, 23, 10.1002/prot.340080106

Braxton, 1996, Protein engineering for stability

Betz, 1993, Disulphide bonds and the stability of globular proteins, Protein Sci., 2, 1551, 10.1002/pro.5560021002

Clarke, 1993, Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation, Biochemistry, 32, 4322, 10.1021/bi00067a022

Zauhar, 1985, A new method for computing the macromolecular electric potential, J. Mol. Biol., 186, 815, 10.1016/0022-2836(85)90399-7

Gilson, 1987, Calculating the electrostatic potential of molecules in solution: method and error assessment, J. Comp. Chem., 9, 327, 10.1002/jcc.540090407

Davis, 1989, Solving the finite difference linearized Poisson–Boltzmann equation: a comparison of relaxation and conjugated gradient methods, J. Comp. Chem., 10, 386, 10.1002/jcc.540100313

Davis, 1990, Electrostatics in biomolecular structure and dynamics, Chem. Rev., 90, 509, 10.1021/cr00101a005

Sharp, 1990, Electrostatic interactions in macromolecules: theory and applications, Annu. Rev. Biophys. Biophys. Chem., 19, 301, 10.1146/annurev.bb.19.060190.001505

Still, 1990, Semianalytical treatment of solvation for molecular mechanics and dynamics, J. Am. Chem. Soc., 112, 6127, 10.1021/ja00172a038

Nicholls, 1991, A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation, J. Comp. Chem., 12, 435, 10.1002/jcc.540120405

Davis, 1991, Dielectric boundary smoothing in finite difference solutions of the Poisson equation: an approach to improve accuracy and convergence, J. Comp. Chem., 12, 909, 10.1002/jcc.540120718

Zhou, 1993, Boundary element solution of macromolecular electrostatics: interaction energy between two proteins, Biophys. J., 65, 955, 10.1016/S0006-3495(93)81094-4

You, 1993, Finite element approach to the electrostatics of macromolecules with arbitrary geometries, J. Comp. Chem., 14, 484, 10.1002/jcc.540140413

Purisima, 1995, A simple yet accurate boundary element method for continuum dielectric calculations, J. Comp. Chem., 16, 681, 10.1002/jcc.540160604

Zaloj, 1998, Diffusion approach to the linear Poisson–Boltzmann equation, Chem. Phys. Lett., 284, 76, 10.1016/S0009-2614(97)01364-X

Bashford, 2000, Generalized Born models of macromolecular solvation effects, Annu. Rev. Phys. Chem., 51, 129, 10.1146/annurev.physchem.51.1.129

Chothia, 1974, Hydrophobic bonding and accessible surface areas in proteins, Nature, 248, 338, 10.1038/248338a0

Eisenberg, 1986, Solvation energy in protein folding and binding, Nature, 319, 199, 10.1038/319199a0

Ooi, 1987, Accessible surface areas as a measure of thermodynamic parameters of hydration of peptides, Proc. Natl Acad. Sci. USA, 84, 3086, 10.1073/pnas.84.10.3086

Vila, 1991, Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitors, Proteins: Struct. Funct. Genet., 10, 199, 10.1002/prot.340100305

Wesson, 1992, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Sci., 1, 227, 10.1002/pro.5560010204

Juffer, 1995, Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding, Protein Sci., 4, 2499, 10.1002/pro.5560041206

Wang, 2001, Solvation model based on weighted solvent accessible surface area, J. Phys. Chem., B, 105, 5055, 10.1021/jp0102318

Hou, 2002, Empirical aqueoues solvation models based on accessible surface areas with implicit electrostatics, J. Phys. Chem., B, 106, 11295, 10.1021/jp025595u

Jackson, 1998, Rapid refinement of protein interfaces incorporating solvation: application to the docking problem, J. Mol. Biol., 276, 265, 10.1006/jmbi.1997.1519

McQuarrie, 1976

Page, 1971, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Natl Acad. Sci. USA, 68, 1678, 10.1073/pnas.68.8.1678

Murray, 2002, The consequences of translational and rotational entropy lost by small molecules on binding to proteins, J. Comput.-Aided Mol. Des., 16, 741, 10.1023/A:1022446720849

Mammen, 1998, Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid melamine lattice, J. Org. Chem., 63, 3821, 10.1021/jo970944f

Finkelstein, 1989, The price of lost freedom: entropy of bimolecular complex formation, Protein Eng., 3, 1, 10.1093/protein/3.1.1

Kittel, 1995

Minh, 2005, The entropic cost of protein–protein association: a case study on Acetylcholinesterase binding to Fasciculin-2, Biophys. J., 89, L25, 10.1529/biophysj.105.069336

Jaynes, 1992, The Gibbs Paradox, 1

Krissinel, 2004, Common subgraph isomorphism detection by backtracking search, Softw. Pract. Exp., 34, 591, 10.1002/spe.588

Murakami, 2006, Inhibition of myotoxic activity of bothrops asper myotoxin II by the anti-trypanosomal drug suramin, J. Mol. Biol., 350, 416, 10.1016/j.jmb.2005.04.072

Schuetz, 2007, Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by Suramin, Structure, 15, 377, 10.1016/j.str.2007.02.002

Evdokimov, 2001, Unusual molecular architecture of the Yersinia pestis Cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit, J. Mol. Biol., 312, 807, 10.1006/jmbi.2001.4973

Luscombe, 2000, An overview of the structures of protein–DNA complexes, Genome Biol., 1, 1, 10.1186/gb-2000-1-1-reviews001

Krissinel, 2004, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallogr., D, 60, 2256, 10.1107/S0907444904026460

Giudice, 2003, Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations, Nucleic Acids Res., 31, 1434, 10.1093/nar/gkg239

Daune, 1999

Rossmann, 2004, The bacteriophage T4 DNA injection machine, Curr. Opin. Struct. Biol., 14, 171, 10.1016/j.sbi.2004.02.001

Rowsell, 1997, Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy, Structure, 5, 337, 10.1016/S0969-2126(97)00191-3

DiTusa, 2001, Thermodynamics of metal ion binding. 1. Metal ion binding by wild-type carbonic anhydrase, Biochemistry, 40, 5338, 10.1021/bi001731e

Lubkowski, 1999, Decamers observed in the crystals of bovine pancreatic trypsin inhibitor, Acta Crystallogr., D, 55, 335, 10.1107/S0907444998011068

Wu, 1994, Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein, Structure, 2, 545, 10.1016/S0969-2126(00)00054-X

Lustbader, 1993, The application of chemical studies of human chorionic gonadotropin to visualize its three-dimensional structure, Endocr. Rev., 14, 291

Littlefield, 1999, The structural basis for the oriented assembly of a TBP/TFB/promoter complex, Biochemistry, 96, 13668

Guo, 1997, Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse, Nature, 389, 40, 10.1038/37925

Fujinaga, 1987, Rat submaxillary gland serine protease, tonin structure solution and refinement at 1.8 Å resolution, J. Mol. Biol., 195, 373, 10.1016/0022-2836(87)90658-9

Evdokimov, 2001, Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit, J. Mol. Biol., 312, 807, 10.1006/jmbi.2001.4973

Haramis, 2006, Selectivity and promiscuity in Eph receptors, Structure, 14, 169, 10.1016/j.str.2006.01.005

Golovin, 2004, E-MSD: an integrated data resource for bioinformatics, Nucleic Acids Res., 32, D211, 10.1093/nar/gkh078

Hunt, 1997, Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage, Cell, 90, 361, 10.1016/S0092-8674(00)80343-8

Almog, 2004, Three-dimensional structure of the R115E mutant of T4-bacteriophage 2′-deoxycytidylate deaminase, Biochemistry, 43, 13715, 10.1021/bi048928h

Kanamaru, 2002, Structure of the cell-puncturing device of bacteriophage T4, Nature, 415, 553, 10.1038/415553a

Van Raaij, 2001, Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre, J. Mol. Biol., 314, 1137, 10.1006/jmbi.2000.5204

Lariviere, 2002, A base-flipping mechanism for the T4 phage beta-glucosyltransferase and identification of a transition-state analog, J. Mol. Biol., 324, 483, 10.1016/S0022-2836(02)01091-4

Leiman, 2000, Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers, J. Mol. Biol., 301, 975, 10.1006/jmbi.2000.3989

Thomassen, 2003, The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold, J. Mol. Biol., 331, 361, 10.1016/S0022-2836(03)00755-1

Kostyuchenko, 1999, The structure of bacteriophage T4 gene product 9: the trigger for tail contraction, Struct. Fold Des., 7, 1213, 10.1016/S0969-2126(00)80055-6

Moarefi, 2000, Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage, J. Mol. Biol., 296, 1215, 10.1006/jmbi.1999.3511

Papanikolopoulou, 2004, Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif, J. Mol. Biol., 342, 219, 10.1016/j.jmb.2004.07.008

Leiman, 2006, Evolution of bacteriophage tails: structure of T4 gene product 10, J. Mol. Biol., 358, 912, 10.1016/j.jmb.2006.02.058

Leiman, 2003, Structure and location of gene product 8 in the bacteriophage T4 baseplate, J. Mol. Biol., 328, 821, 10.1016/S0022-2836(03)00366-8

Raaijmakers, 2001, Conformational flexibility in T4 endonuclease VII revealed by crystallography: implications for substrate binding and cleavage, J. Mol. Biol., 308, 311, 10.1006/jmbi.2001.4592

Raaijmakers, 1999, X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture, EMBO J., 18, 1447, 10.1093/emboj/18.6.1447

Finnin, 1997, The activation domain of the MotA transcription factor from bacteriophage T4, EMBO J., 16, 1992, 10.1093/emboj/16.8.1992

Mueser, 2000, Bacteriophage T4 gene 59 helicase assembly protein binds replication fork DNA. The 1.45 Å resolution crystal structure reveals a novel alpha-helical two-domain fold, J. Mol. Biol., 296, 597, 10.1006/jmbi.1999.3438

Morera, 1999, T4 phage beta-glucosyltransferase: substrate binding and proposed catalytic mechanism, J. Mol. Biol., 292, 717, 10.1006/jmbi.1999.3094

He, 2004, Alanine-scanning mutagenesis of the beta-sheet region of phage T4 lysozyme suggests that tertiary context has a dominant effect on beta-sheet formation, Protein Sci., 10, 2716, 10.1110/ps.04875504

Sickmier, 2004, The crystal structure of the UvsW helicase from bacteriophage T4, Structure, 12, 583, 10.1016/j.str.2004.02.016

Lariviere, 2003, Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism, J. Mol. Biol., 330, 1077, 10.1016/S0022-2836(03)00635-1

Morera, 2001, High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding, J. Mol. Biol., 311, 569, 10.1006/jmbi.2001.4905

Park, 2002, Crystal structures of unligated and CN-ligated Glycera dibranchiata monomer ferric hemoglobin components III and IV, Proteins: Struct. Funct. Genet., 49, 49, 10.1002/prot.10199

Li, 2002, The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain: the ‘double wing’ motif, Mol. Microbiol., 43, 1079, 10.1046/j.1365-2958.2002.02809.x