Inference of Macromolecular Assemblies from Crystalline State
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fermi, 1984, The crystal structure of human deoxyhaemoglobin at 1.74 Å resolution, J. Mol. Biol., 175, 159, 10.1016/0022-2836(84)90472-8
Berg, 2002
Liu, 2002, Light scattering by proteins, 3023
Feigin, 1987
Dass, 2001
Svergun, 2002, Advances in structure analysis using small-angle scattering in solution, Curr. Opin. Struct. Biol., 12, 654, 10.1016/S0959-440X(02)00363-9
Cavanagh, 1995
Blundell, 1976
Ponstingl, 2000, Discriminating between homodimeric and monomeric proteins in the crystalline state, Proteins: Struct. Funct. Genet., 41, 47, 10.1002/1097-0134(20001001)41:1<47::AID-PROT80>3.0.CO;2-8
Henrick, 1998, PQS: a protein quaternary structure file server, Trends Biochem. Sci., 23, 358, 10.1016/S0968-0004(98)01253-5
Ponstingl, 2003, Automatic inference of protein quaternary structure from crystals, J. Appl. Crystallogr., 36, 1116, 10.1107/S0021889803012421
Jones, 1996, Principles of protein–protein interactions, Proc. Natl Acad. Sci. USA, 93, 13, 10.1073/pnas.93.1.13
Argos, 1988, An investigation of protein subunit and domain interfaces, Protein Eng., 2, 101, 10.1093/protein/2.2.101
Janin, 1990, The structure of protein–protein recognition sites, J. Biol. Chem., 265, 16027, 10.1016/S0021-9258(17)46181-3
Jones, 1995, Protein-protein interactions: a review of protein dimer structures, Prog. Biophys. Mol. Biol., 63, 31, 10.1016/0079-6107(94)00008-W
Miller, 1989, The structure of interfaces between subunits ofdimeric and tetrameric proteins, Protein Eng., 3, 77, 10.1093/protein/3.2.77
Padlan, 1990, On the nature of antibody combining sites: unusual structural features that may confer on these sites an enhanced capacity for binding ligands, Proteins: Struct. Funct. Genet., 7, 112, 10.1002/prot.340070203
Glaser, 2006, A method for localizing ligand binding pockets in protein structures, Proteins: Struct. Funct. Genet., 62, 479, 10.1002/prot.20769
Gutteridge, 2005, Understanding nature's catalytic toolkit, Trends Biochem. Sci., 30, 622, 10.1016/j.tibs.2005.09.006
Gutteridge, 2003, Using a neural network and spatial clustering to predict the location of active sites in enzymes, J. Mol. Biol., 330, 719, 10.1016/S0022-2836(03)00515-1
Tsai, 1996, Protein-protein interfaces: architectures and interactions in protein–protein interfaces and in protein cores. Their similarities and differences, Crit. Rev. Biochem. Mol. Biol., 31, 127, 10.3109/10409239609106582
Lo Conte, 1999, The atomic structure of protein–protein recognition sites, J. Mol. Biol., 285, 2177, 10.1006/jmbi.1998.2439
Chakrabarti, 2002, Dissecting protein–protein recognition sites, Proteins: Struct. Funct. Genet., 47, 334, 10.1002/prot.10085
Keskin, 2004, A new, structurally nonredundant, diverse data set of protein interfaces and its implications, Protein Sci., 13, 1043, 10.1110/ps.03484604
Ogmen, 2005, PRISM: protein interactions by structural matching, Nucleic Acids Res., 33, W331, 10.1093/nar/gki585
Preiβner, 1998, Dictionary of interfaces in proteins (DIP). Data bank of complementary molecular surface patches, J. Mol. Biol., 280, 535, 10.1006/jmbi.1998.1878
Gong, 2005, A protein domain interaction interface database: InterPare, BMC Bioinformatics, 6, 207, 10.1186/1471-2105-6-207
Moore, 1972
Baker, 1984, Hydrogen bonding in globular proteins, Prog. Biophys. Mol. Biol., 44, 97, 10.1016/0079-6107(84)90007-5
Janin, 1988, Surface, subunit interfaces and interior of oligomeric proteins, J. Mol. Biol., 204, 155, 10.1016/0022-2836(88)90606-7
Horton, 1992, Calculation of the free energy of association for protein complexes, Protein Sci., 1, 169, 10.1002/pro.5560010117
Janin, 1995, Protein–protein interaction at crystal contacts, Proteins: Struct. Funct. Genet., 23, 580, 10.1002/prot.340230413
Hermann, 1972, Theory of hydrophobic bonding. II. The correlation of hydrocarbon solubility in water with solvent cavity surface area, J. Phys. Chem., 76, 2754, 10.1021/j100663a023
Amidon, 1975, Solubility of nonelectrolytes in polar solvents. V. Estimation of the solubility of aliphatic monofunctional compounds in water using a molecular surface area approach, J. Phys. Chem., 79, 2239, 10.1021/j100588a008
Floris, 1989, Evaluation of the dispersion contribution to the solvation energy. A simple computational model in the continuum approximation, J. Comp. Chem., 10, 616, 10.1002/jcc.540100504
You, 1995, Conformation and hydrogen ion titration of proteins: a continuum electrostatic model with conformational flexibility, Biophys. J., 69, 1721, 10.1016/S0006-3495(95)80042-1
McDonald, 1994, Satisfying hydrogen bonding potential in proteins, J. Mol. Biol., 238, 777, 10.1006/jmbi.1994.1334
Bahadur, 2003, Dissecting subunit interfaces in homodimeric proteins, Proteins: Struct. Funct. Genet., 53, 708, 10.1002/prot.10461
Xu, 1997, Hydrogen bonds and salt bridges across protein–protein interfaces, Protein Eng., 10, 999, 10.1093/protein/10.9.999
Pace, 1996, Forces contributing to the conformational stability of proteins, FASEB J., 10, 75, 10.1096/fasebj.10.1.8566551
Fersht, 1987, The hydrogen bond in molecular recognition, Trends Biochem. Sci., 12, 3214, 10.1016/0968-0004(87)90146-0
Horovitz, 1990, Strength and co-operativity of contributions of surface salt bridges to protein stability, J. Mol. Biol., 216, 1031, 10.1016/S0022-2836(99)80018-7
Akke, 1990, Protein stability and electrostatic interactions between solvent exposed charged side chains, Proteins: Struct. Funct. Genet., 8, 23, 10.1002/prot.340080106
Braxton, 1996, Protein engineering for stability
Betz, 1993, Disulphide bonds and the stability of globular proteins, Protein Sci., 2, 1551, 10.1002/pro.5560021002
Clarke, 1993, Engineered disulfide bonds as probes of the folding pathway of barnase: increasing the stability of proteins against the rate of denaturation, Biochemistry, 32, 4322, 10.1021/bi00067a022
Zauhar, 1985, A new method for computing the macromolecular electric potential, J. Mol. Biol., 186, 815, 10.1016/0022-2836(85)90399-7
Gilson, 1987, Calculating the electrostatic potential of molecules in solution: method and error assessment, J. Comp. Chem., 9, 327, 10.1002/jcc.540090407
Davis, 1989, Solving the finite difference linearized Poisson–Boltzmann equation: a comparison of relaxation and conjugated gradient methods, J. Comp. Chem., 10, 386, 10.1002/jcc.540100313
Davis, 1990, Electrostatics in biomolecular structure and dynamics, Chem. Rev., 90, 509, 10.1021/cr00101a005
Sharp, 1990, Electrostatic interactions in macromolecules: theory and applications, Annu. Rev. Biophys. Biophys. Chem., 19, 301, 10.1146/annurev.bb.19.060190.001505
Still, 1990, Semianalytical treatment of solvation for molecular mechanics and dynamics, J. Am. Chem. Soc., 112, 6127, 10.1021/ja00172a038
Nicholls, 1991, A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation, J. Comp. Chem., 12, 435, 10.1002/jcc.540120405
Davis, 1991, Dielectric boundary smoothing in finite difference solutions of the Poisson equation: an approach to improve accuracy and convergence, J. Comp. Chem., 12, 909, 10.1002/jcc.540120718
Zhou, 1993, Boundary element solution of macromolecular electrostatics: interaction energy between two proteins, Biophys. J., 65, 955, 10.1016/S0006-3495(93)81094-4
You, 1993, Finite element approach to the electrostatics of macromolecules with arbitrary geometries, J. Comp. Chem., 14, 484, 10.1002/jcc.540140413
Purisima, 1995, A simple yet accurate boundary element method for continuum dielectric calculations, J. Comp. Chem., 16, 681, 10.1002/jcc.540160604
Zaloj, 1998, Diffusion approach to the linear Poisson–Boltzmann equation, Chem. Phys. Lett., 284, 76, 10.1016/S0009-2614(97)01364-X
Bashford, 2000, Generalized Born models of macromolecular solvation effects, Annu. Rev. Phys. Chem., 51, 129, 10.1146/annurev.physchem.51.1.129
Chothia, 1974, Hydrophobic bonding and accessible surface areas in proteins, Nature, 248, 338, 10.1038/248338a0
Eisenberg, 1986, Solvation energy in protein folding and binding, Nature, 319, 199, 10.1038/319199a0
Ooi, 1987, Accessible surface areas as a measure of thermodynamic parameters of hydration of peptides, Proc. Natl Acad. Sci. USA, 84, 3086, 10.1073/pnas.84.10.3086
Vila, 1991, Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitors, Proteins: Struct. Funct. Genet., 10, 199, 10.1002/prot.340100305
Wesson, 1992, Atomic solvation parameters applied to molecular dynamics of proteins in solution, Protein Sci., 1, 227, 10.1002/pro.5560010204
Juffer, 1995, Comparison of atomic solvation parametric sets: applicability and limitations in protein folding and binding, Protein Sci., 4, 2499, 10.1002/pro.5560041206
Wang, 2001, Solvation model based on weighted solvent accessible surface area, J. Phys. Chem., B, 105, 5055, 10.1021/jp0102318
Hou, 2002, Empirical aqueoues solvation models based on accessible surface areas with implicit electrostatics, J. Phys. Chem., B, 106, 11295, 10.1021/jp025595u
Jackson, 1998, Rapid refinement of protein interfaces incorporating solvation: application to the docking problem, J. Mol. Biol., 276, 265, 10.1006/jmbi.1997.1519
McQuarrie, 1976
Page, 1971, Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect, Proc. Natl Acad. Sci. USA, 68, 1678, 10.1073/pnas.68.8.1678
Murray, 2002, The consequences of translational and rotational entropy lost by small molecules on binding to proteins, J. Comput.-Aided Mol. Des., 16, 741, 10.1023/A:1022446720849
Mammen, 1998, Estimating the entropic cost of self-assembly of multiparticle hydrogen-bonded aggregates based on the cyanuric acid melamine lattice, J. Org. Chem., 63, 3821, 10.1021/jo970944f
Finkelstein, 1989, The price of lost freedom: entropy of bimolecular complex formation, Protein Eng., 3, 1, 10.1093/protein/3.1.1
Kittel, 1995
Minh, 2005, The entropic cost of protein–protein association: a case study on Acetylcholinesterase binding to Fasciculin-2, Biophys. J., 89, L25, 10.1529/biophysj.105.069336
Jaynes, 1992, The Gibbs Paradox, 1
Krissinel, 2004, Common subgraph isomorphism detection by backtracking search, Softw. Pract. Exp., 34, 591, 10.1002/spe.588
Murakami, 2006, Inhibition of myotoxic activity of bothrops asper myotoxin II by the anti-trypanosomal drug suramin, J. Mol. Biol., 350, 416, 10.1016/j.jmb.2005.04.072
Schuetz, 2007, Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by Suramin, Structure, 15, 377, 10.1016/j.str.2007.02.002
Evdokimov, 2001, Unusual molecular architecture of the Yersinia pestis Cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit, J. Mol. Biol., 312, 807, 10.1006/jmbi.2001.4973
Luscombe, 2000, An overview of the structures of protein–DNA complexes, Genome Biol., 1, 1, 10.1186/gb-2000-1-1-reviews001
Krissinel, 2004, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallogr., D, 60, 2256, 10.1107/S0907444904026460
Giudice, 2003, Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations, Nucleic Acids Res., 31, 1434, 10.1093/nar/gkg239
Daune, 1999
Rossmann, 2004, The bacteriophage T4 DNA injection machine, Curr. Opin. Struct. Biol., 14, 171, 10.1016/j.sbi.2004.02.001
Rowsell, 1997, Crystal structure of carboxypeptidase G2, a bacterial enzyme with applications in cancer therapy, Structure, 5, 337, 10.1016/S0969-2126(97)00191-3
DiTusa, 2001, Thermodynamics of metal ion binding. 1. Metal ion binding by wild-type carbonic anhydrase, Biochemistry, 40, 5338, 10.1021/bi001731e
Lubkowski, 1999, Decamers observed in the crystals of bovine pancreatic trypsin inhibitor, Acta Crystallogr., D, 55, 335, 10.1107/S0907444998011068
Wu, 1994, Structure of human chorionic gonadotropin at 2.6 Å resolution from MAD analysis of the selenomethionyl protein, Structure, 2, 545, 10.1016/S0969-2126(00)00054-X
Lustbader, 1993, The application of chemical studies of human chorionic gonadotropin to visualize its three-dimensional structure, Endocr. Rev., 14, 291
Littlefield, 1999, The structural basis for the oriented assembly of a TBP/TFB/promoter complex, Biochemistry, 96, 13668
Guo, 1997, Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse, Nature, 389, 40, 10.1038/37925
Fujinaga, 1987, Rat submaxillary gland serine protease, tonin structure solution and refinement at 1.8 Å resolution, J. Mol. Biol., 195, 373, 10.1016/0022-2836(87)90658-9
Evdokimov, 2001, Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit, J. Mol. Biol., 312, 807, 10.1006/jmbi.2001.4973
Haramis, 2006, Selectivity and promiscuity in Eph receptors, Structure, 14, 169, 10.1016/j.str.2006.01.005
Golovin, 2004, E-MSD: an integrated data resource for bioinformatics, Nucleic Acids Res., 32, D211, 10.1093/nar/gkh078
Hunt, 1997, Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage, Cell, 90, 361, 10.1016/S0092-8674(00)80343-8
Almog, 2004, Three-dimensional structure of the R115E mutant of T4-bacteriophage 2′-deoxycytidylate deaminase, Biochemistry, 43, 13715, 10.1021/bi048928h
Kanamaru, 2002, Structure of the cell-puncturing device of bacteriophage T4, Nature, 415, 553, 10.1038/415553a
Van Raaij, 2001, Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre, J. Mol. Biol., 314, 1137, 10.1006/jmbi.2000.5204
Lariviere, 2002, A base-flipping mechanism for the T4 phage beta-glucosyltransferase and identification of a transition-state analog, J. Mol. Biol., 324, 483, 10.1016/S0022-2836(02)01091-4
Leiman, 2000, Structure of bacteriophage T4 gene product 11, the interface between the baseplate and short tail fibers, J. Mol. Biol., 301, 975, 10.1006/jmbi.2000.3989
Thomassen, 2003, The structure of the receptor-binding domain of the bacteriophage T4 short tail fibre reveals a knitted trimeric metal-binding fold, J. Mol. Biol., 331, 361, 10.1016/S0022-2836(03)00755-1
Kostyuchenko, 1999, The structure of bacteriophage T4 gene product 9: the trigger for tail contraction, Struct. Fold Des., 7, 1213, 10.1016/S0969-2126(00)80055-6
Moarefi, 2000, Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage, J. Mol. Biol., 296, 1215, 10.1006/jmbi.1999.3511
Papanikolopoulou, 2004, Adenovirus fibre shaft sequences fold into the native triple beta-spiral fold when N-terminally fused to the bacteriophage T4 fibritin foldon trimerisation motif, J. Mol. Biol., 342, 219, 10.1016/j.jmb.2004.07.008
Leiman, 2006, Evolution of bacteriophage tails: structure of T4 gene product 10, J. Mol. Biol., 358, 912, 10.1016/j.jmb.2006.02.058
Leiman, 2003, Structure and location of gene product 8 in the bacteriophage T4 baseplate, J. Mol. Biol., 328, 821, 10.1016/S0022-2836(03)00366-8
Raaijmakers, 2001, Conformational flexibility in T4 endonuclease VII revealed by crystallography: implications for substrate binding and cleavage, J. Mol. Biol., 308, 311, 10.1006/jmbi.2001.4592
Raaijmakers, 1999, X-ray structure of T4 endonuclease VII: a DNA junction resolvase with a novel fold and unusual domain-swapped dimer architecture, EMBO J., 18, 1447, 10.1093/emboj/18.6.1447
Finnin, 1997, The activation domain of the MotA transcription factor from bacteriophage T4, EMBO J., 16, 1992, 10.1093/emboj/16.8.1992
Mueser, 2000, Bacteriophage T4 gene 59 helicase assembly protein binds replication fork DNA. The 1.45 Å resolution crystal structure reveals a novel alpha-helical two-domain fold, J. Mol. Biol., 296, 597, 10.1006/jmbi.1999.3438
Morera, 1999, T4 phage beta-glucosyltransferase: substrate binding and proposed catalytic mechanism, J. Mol. Biol., 292, 717, 10.1006/jmbi.1999.3094
He, 2004, Alanine-scanning mutagenesis of the beta-sheet region of phage T4 lysozyme suggests that tertiary context has a dominant effect on beta-sheet formation, Protein Sci., 10, 2716, 10.1110/ps.04875504
Sickmier, 2004, The crystal structure of the UvsW helicase from bacteriophage T4, Structure, 12, 583, 10.1016/j.str.2004.02.016
Lariviere, 2003, Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism, J. Mol. Biol., 330, 1077, 10.1016/S0022-2836(03)00635-1
Morera, 2001, High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding, J. Mol. Biol., 311, 569, 10.1006/jmbi.2001.4905
Park, 2002, Crystal structures of unligated and CN-ligated Glycera dibranchiata monomer ferric hemoglobin components III and IV, Proteins: Struct. Funct. Genet., 49, 49, 10.1002/prot.10199