Virus gây bệnh từ DNA bổ sung toàn bộ của virus bệnh bọng lợn chủng HK/70

Haixue Zheng1,2, Xiangtao Liu1,2, Youjun Shang2, Jinyan Wu2, Xingwen Bai2, Ye Jin2, Shiqi Sun1,2, Huichen Guo2, Hong Tian2, Xia Feng2, Shuanghui Yin2, Jianhong Guo1,2, Guozheng Cong1,2, Zaixin Liu1,2, Huiyun Chang1,2, Junwu Ma1,2, Qingge Xie1,2
1Graduate School, Chinese Academy of Sciences, Beijing, China
2Key Laboratory of Animal Virology of Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China

Tóm tắt

Clone cDNA dài đầy đủ của virus bệnh bọng lợn, chủng HK/70, được xây dựng mang tên pSVOK12 nhằm nghiên cứu tính kháng nguyên, sự tái bản, sự trưởng thành và độc lực của virus bệnh bọng lợn. RNA được phiên mã in vitro từ pSVOK12 đã được chuyển vào tế bào IBRS-2, sau đó RNA virus thu hồi đã được tách chiết và giải trình tự, tiếp theo là thực hiện các thử nghiệm ngưng tụ hồng cầu gián tiếp, thử nghiệm miễn dịch huỳnh quang gián tiếp, kiểm tra kính hiển vi điện tử, xác định liều nhiễm bẩn 50% trong văn hóa mô (TCID50) và nghiên cứu độc lực trên chuột để khảo sát tính kháng nguyên và độc lực của virus thu hồi. Kết quả cho thấy các clone gây nhiễm mà chúng tôi thu được và virus xuất phát từ pSVOK12 đều có các tính chất sinh học tương tự như chủng cha HK/70. Clone cDNA gây nhiễm toàn bộ, pSVOK12, sẽ rất hữu ích trong các nghiên cứu về tính kháng nguyên, độc lực, sinh bệnh học, sự trưởng thành và tái bản của virus bệnh bọng lợn.

Từ khóa

#virus bệnh bọng lợn #cDNA toàn bộ #độc lực #sinh bệnh học #tính kháng nguyên

Tài liệu tham khảo

Shaw A E, Reid S M, Knowles N J, et al. Sequence analysis of the 5′ untranslated region of swine vesicular disease virus reveals block deletion between the end of the internal ribosomal entry site and the initiation codon. J Gen Virol, 2005, 86: 2753–2761

Inoue T, Suzuki T, Sekiguchi K. The complete nucleotide sequence of swine vesicular disease virus, J Gen Virol, 1989, 70: 919–934

Seechurn P, Knowles N J, McCauley J W. The complete nucleotide sequence of a pathogenic swine vesicular disease virus. Virus Res, 1990, 16: 255–274

Graves J H. Serological relationship of swine vesicular disease virus and coxsackie B5 virus. Nature, 1973, 245: 314–415

Brown F, Talbot P, Burrows R. Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature, 1973, 245: 315–316

Zhang G, Wilsden G, Knowles N J, et al. Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. J Gen Virol, 1993, 74: 845–853

Zhang G, Haydon D T, Knowles N J, et al. Molecular evolution of swine vesicular disease virus. J Gen Virol, 1999, 80: 639–651

Garland A J M, Mann J A. Attempts to infect pigs with coxsackie virus type B5. J Hyg, 1974, 73: 85–96

Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310: 676–678

Nardelli L, Lodetti E, Gualandi G L, et al. A foot and mouth disease syndrome in pigs caused by an enterovirus. Nature, 1968, 219: 1275–1276

Kanno T, Inoue T, Mackay D, et al. Viruses produced from complementary DNA of virulent and avirulent strains of swine vesicular disease viruses retain the in vivo and in vitro characteristics of the parental strain. Arch Virol, 1998, 143: 1055–1062

Racaniello V R, Baltimore D, Cloned poliovirus complementary DNA is infectious in mammalian cells. Science, 1981, 214: 916–919

Cohen J I, Ticehurst J R, Feinstone S M, et al. Hepatitis A virus cDNA and its RNA transcripts are infectious in cell culture. J Virol, 1987, 61: 3035–3039

Kandolf R, Hofschneider P H. Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: Full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci USA, 1985, 82: 4818–4822

Klump W M, Bergmann I, Müller B C, et al. Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: Two initial 50 uridine residues are regained during plus-strand RNA synthesis. J Virol, 1990, 64: 1573–1583

Westrop G D, Wareham K A, Evans D M A, et al. Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol, 1989, 63: 1338–1344

Inoue T, Yamaguchi S, Saeki T, et al. Production of infectious swine vesicular disease virus from cloned cDNA in mammalian cells. J Gen Virol, 1990, 71: 1835–1838

Rebel J M, Leendertse C H, Dekker A, et al. Construction of a full-lengthinfectious cDNA clone of swine vesicular disease virus strain NET/1/92 and analysis of new antigenic variants derived from it. J Gen Virol, 2000, 81(11): 2763–2769

Reed L J, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg, 1938, 27: 493–497

Kanno T, Mackay D, Inoue T, et al. Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. J Virol, 1999, 73: 2710–2716

Brocchi E, Zhang G, Knowles N J, et al. Molecular epidemiology of recent outbreaks of swine vesicular disease: Two genetically and antigenically distinct variants in Europe, 1987–94. Epidemiol Infect, 1997, 118: 51–61

Dekker A, Leendertse C H, Poelwijk F, et al. Chimeric SVD viruses produced by fusion-PCR: A new method for epitope mapping. J Virol Methods, 2000, 86: 131–141

Boyer J C, Haenni A L. Infectious transcripts and cDNA clones of RNA viruses. Virol, 1994, 198(2): 415–426

Kaplan G, Lubinski J, Dasgupta A, et al. In vitro synthesis of infectious poliovirus RNA. Proc Natl Acad Sci USA, 1985, 82: 8424–8428

Goldstein N O, Birdoe I U, Burness A T H. Requirement of an adenylic acid-rich segment for the infectivity of encephalomyocarditis virus RNA. J Gen Virol, 1976, 31: 271–276

Hruby D E, Robert W K. Encephalomyocarditis virus RNA: Variation in polyadenylic acid content and biological activity. J Virol, 1976, 19: 325–330

Grubman M J, Baxt B, Bachrach H L. Foot-and-mouth disease virus viron RNA: Studies on the relation between the length of its 3′-poly(A) segment and infectivity. Virol, 1979, 97: 22–31

Liu G Q, Liu Z X, Xie Q G, et al. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA of OH/CHA/99. Chin Sci Bull, 2004, 49(11): 1137–1141

Duke G M, Osorio J E, Palmenberg A C. Attenuation of Mengo virus through genetic engineering of the 5′ noncoding poly (C) tract. Nature, 1990, 343: 474–478