Inertially confined plasma in an imploding bubble

Nature Physics - Tập 6 Số 8 - Trang 598-601 - 2010
David J. Flannigan1, Kenneth S. Suslick1
1School of Chemical Sciences, Chemical and Life Sciences Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Moss, W. C., Clarke, D. B. & Young, D. A. Calculated pulse widths and spectra of a single sonoluminescing bubble. Science 276, 1398–1401 (1997).

Bass, A., Ruuth, S. J., Camara, C., Merriman, B. & Putterman, S. Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble. Phys. Rev. Lett. 101, 234301 (2008).

Putterman, S. J. & Weninger, K. R. Sonoluminescence: How bubbles turn sound into light. Annu. Rev. Fluid Mech. 32, 445–476 (2000).

Brenner, M. P., Hilgenfeldt, S. & Lohse, D. Single-bubble sonoluminescence. Rev. Mod. Phys. 74, 425–484 (2002).

Suslick, K. S. & Flannigan, D. J. Inside a collapsing bubble: Sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59, 659–683 (2008).

Flannigan, D. J. & Suslick, K. S. Plasma line emission during single-bubble cavitation. Phys. Rev. Lett. 95, 044301 (2005).

Ress, D. et al. Measurement of laser-plasma electron density with a soft X-ray laser deflectometer. Science 265, 514–517 (1994).

Barber, B. P. & Putterman, S. J. Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991).

Suslick, K. S. Sonochemistry. Science 247, 1439–1445 (1990).

Weninger, K. R., Barber, B. P. & Putterman, S. J. Pulsed Mie scattering measurements of the collapse of a sonoluminescing bubble. Phys. Rev. Lett. 78, 1799–1802 (1997).

Matula, T. J. Inertial cavitation and single-bubble sonoluminescence. Phil. Trans. R. Soc. Lond. A 357, 225–249 (1999).

Taleyarkhan, R. P. et al. Evidence for nuclear emissions during acoustic cavitation. Science 295, 1868–1873 (2002).

Taleyarkhan, R. P. et al. Nuclear emissions during self-nucleated acoustic cavitation. Phys. Rev. Lett. 96, 034301 (2006).

Naranjo, B. Comment on ‘Nuclear emissions during self-nucleated acoustic cavitation’. Phys. Rev. Lett. 97, 149403 (2006).

Reich, E. S. Is bubble fusion simply hot air? Nature 10.1038/news060306-2 (2006).

Shapira, D. & Saltmarsh, M. Nuclear fusion in collapsing bubbles—Is it there? An attempt to repeat the observation of nuclear emissions from sonoluminescence. Phys. Rev. Lett. 89, 104302 (2002).

Camara, C. G., Hopkins, S. D., Suslick, K. S. & Putterman, S. J. Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone. Phys. Rev. Lett. 98, 064301 (2007).

Geisler, R., Schmidt-Ott, W. D., Kurz, T. & Lauterborn, W. Search for neutron emission in laser-induced cavitation. Europhys. Lett. 66, 435–440 (2004).

Flannigan, D. J. & Suslick, K. S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 52–55 (2005).

Flannigan, D. J., Hopkins, S. D., Camara, C. G., Putterman, S. J. & Suslick, K. S. Measurement of pressure and density inside a single sonoluminescing bubble. Phys. Rev. Lett. 96, 204301 (2006).

Didenko, Y. T. & Suslick, K. S. The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation. Nature 418, 394–397 (2002).

Storey, B. D. & Szeri, A. J. Water vapour, sonoluminescence and sonochemistry. Proc. R. Soc. Lond. A 456, 1685–1709 (2000).

Flannigan, D. J., Hopkins, S. D. & Suslick, K. S. Sonochemistry and sonoluminescence in ionic liquids, molten salts, and concentrated electrolyte solutions. J. Organomet. Chem. 690, 3513–3517 (2005).

Hilgenfeldt, S., Grossmann, S. & Lohse, D. A simple explanation of light emission in sonoluminescence. Nature 398, 402–405 (1999).

Griem, H. R. Spectral Line Broadening by Plasmas (Academic, 1974).

Jones, D. W., Wiese, W. L. & Woltz, L. A. Ion broadening of Ar I lines in a plasma. Phys. Rev. A 34, 450–456 (1986).

McNamara, W. B., Didenko, Y. T. & Suslick, K. S. Sonoluminescence temperatures during multi-bubble cavitation. Nature 401, 772–775 (1999).

Milosavljević, V. & Djeniže, S. Ion contribution to the prominent Ne I, Ar I and Kr I spectral line broadening. Astron. Astrophys. 398, 1179–1184 (2003).

Zel’dovich, Ya., Raizer, B. & Yu, P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Dover Publications, 2002).

Chen, W. Z., Huang, W., Liang, Y., Gao, X. X. & Cui, W. C. Time-resolved spectra of single-bubble sonoluminescence in sulfuric acid with a streak camera. Phys. Rev. E 78, 035301 (2008).