Inertial endomorphisms of an abelian group

Springer Science and Business Media LLC - Tập 195 - Trang 219-234 - 2014
Ulderico Dardano1, Silvana Rinauro2
1Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università di Napoli “Federico II”, Naples, Italy
2Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Potenza, Italy

Tóm tắt

We describe inertial endomorphisms of an abelian group $$A$$ , that is endomorphisms $$\varphi $$ with the property $$|(\varphi (X)+X)/X|<\infty $$ for each $$X\le A$$ . They form a ring $$IE(A)$$ containing the ideal $$F(A)$$ formed by the so-called finitary endomorphisms, the ring of power endomorphisms and also other non-trivial instances. We show that the quotient ring $$IE(A)/F(A)$$ is commutative. Moreover, inertial invertible endomorphisms form a group, provided $$A$$ has finite torsion-free rank. In any case, the group $$IAut(A)$$ they generate is commutative modulo the group $$FAut(A)$$ of finitary automorphisms, which is known to be locally finite. We deduce that $$IAut(A)$$ is locally-(center-by-finite). Also, we consider the lattice dual property, that is $$|X/(X\cap \varphi (X))|<\infty $$ for each $$X\le A$$ and show that this implies the above one, provided $$A$$ has finite torsion-free rank.

Tài liệu tham khảo

Belyaev, V.V., Kuzucuoglu, M., Seckin, E.: Totally inert groups. Rend. Semin. Mat. Univ. Padova 102, 151–156 (1999) Casolo, C.: Groups with finite conjugacy classes of subnormal subgroups. Rend. Semin. Mat. Univ. Padova 81, 107–149 (1989) Dardano, U., Rinauro, S.: Inertial automorphisms of an abelian group. Rend. Semin. Mat. Univ. Padova 127, 213–233 (2012) Dardano, U., Rinauro, S.: On the ring of inertial endomorphisms of an abelian group. Ricerche Mat. (2014). doi:10.1007/s11587-014-0199-3 De Falco, M., de Giovanni, F., Musella, C., Trabelsi, N.: Strongly inertial groups. Commun. Algebra 41, 2213–2227 (2013) Dikranjan, D., Giordano Bruno, A., Salce, L., Virili, S.: Fully inert subgroups of divisible Abelian groups. J. Group Theory 16, 915–939 (2013) Dikranjan, D., Giordano Bruno, A., Salce, L., Virili, S.: Intrinsic algebraic entropy. J. Pure Appl. Algebra (2014). doi:10.1016/j.jpaa.2014.09.033 Dixon, M., Evans, M.J., Tortora, A.: On totally inert simple groups. Cent. Eur. J. Math. 8(1), 22–25 (2010) Franciosi, S., de Giovanni, F., Newell, M.L.: Groups whose subnormal subgroups are normal-by-finite. Commun. Alg. 23(14), 5483–5497 (1995) Fuchs, L.: Infinite Abelian Groups. Academic Press, New York (1970–1973) Robinson, D.J.S.: On inert subgroups of a group. Rend. Semin. Mat. Univ. Padova 115, 137–159 (2006) Specht, W., Heineken, H.: Gruppen mit endlicher Komponentenzahl fastgleicher Untergruppen. Math. Nachr. 134, 73–82 (1987) Wehrfritz, B.A.F.: Finite-finitary groups of automorphisms. J. Algebra Appl. 1(4), 375–389 (2002)