Inertial alternating direction method of multipliers for non-convex non-smooth optimization

Le Thi Khanh Hien1, Duy Nhat Phan2, Nicolas Gillis3
1Huawei Belgium Research Center
2Dynamic Decision Making Laboratory, Carnegie Mellon University, Pittsburgh, USA
3Department of Mathematics and Operational Research, Faculté polytechnique, Université de Mons, Mons, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1), 5–16 (2009)

Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Math. Program. 137(1), 91–129 (2013)

Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. (2011). https://doi.org/10.1561/2200000015

Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J. Optim. 23, 2037–2060 (2013)

Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer (1998)

Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)

Bot, R.I., Nguyen, D.K.: The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates. Math. Oper. Res. 45(2), 682–712 (2020)

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: Proceeding of International Conference on Machine Learning ICML’98 (1998)

Buccini, A., Dell’Acqua, P., Donatelli, M.: A general framework for admm acceleration. Numer. Algorithms (2020). https://doi.org/10.1007/s11075-019-00839-y

Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

Canyi, L., Feng, J., Yan, S., Lin, Z.: A unified alternating direction method of multipliers by majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40, 527–541 (2018). https://doi.org/10.1109/TPAMI.2017.2689021

Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66, 457–485 (2016)

Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. Rice CAAM tech report TR12-14 66 (2012)

Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)

Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)

Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM Math. Model. Numer. Anal. Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)

Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss-seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)

Hien, L.T.K., Gillis, N., Patrinos, P.: Inertial block proximal method for non-convex non-smooth optimization. In: Thirty-Seventh International Conference on Machine Learning ICML 2020 (2020)

Hien, L.T.K., Phan, D.N., Gillis, N.: Inertial block majorization minimization framework for nonconvex nonsmooth optimization (2020). arXiv:2010.12133

Hildreth, C.: A quadratic programming procedure. Naval Res. Logist. Q. 4(1), 79–85 (1957)

Hong, M., Chang, T.H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.Q.: A block successive upper-bound minimization method of multipliers for linearly constrained convex optimization. Math. Oper. Res. 45(3), 833–861 (2020)

Huang, F., Chen, S., Huang, H.: Faster stochastic alternating direction method of multipliers for nonconvex optimization. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 2839–2848. PMLR (2019). http://proceedings.mlr.press/v97/huang19a.html

Huang, F., Chen, S., Lu, Z.: Stochastic alternating direction method of multipliers with variance reduction for nonconvex optimization (2016). arXiv:1610.02758

Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. (2014). https://doi.org/10.1007/s10915-013-9740-x

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015). https://doi.org/10.1137/140998135

Li, H., Lin, Z.: Accelerated alternating direction method of multipliers: an optimal o(1 / k) nonergodic analysis. J. Sci. Comput. 79, 671–699 (2019)

Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 612–620. Curran Associates Inc. (2011)

Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 International Conference on Computer Vision, pp. 1615–1622 (2011)

Liu, Q., Shen, X., Gu, Y.: Linearized admm for nonconvex nonsmooth optimization with convergence analysis. IEEE Access 7, 76131–76144 (2019)

Lu, C., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839 (2016)

Mairal, J.: Optimization with first-order surrogate functions. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, vol. 28, ICML’13, pp. 783–791. JMLR.org (2013)

Markovsky, I.: Low Rank Approximation: Algorithms, Implementation, Applications. vol. 906. Springer (2012)

Melo, J.G., Monteiro, R.D.C.: Iteration-complexity of a jacobi-type non-euclidean admm for multi-block linearly constrained nonconvex programs (2017)

Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publ. (2004)

Ochs, P.: Unifying abstract inexact convergence theorems and block coordinate variable metric ipiano. SIAM J. Optim. 29(1), 541–570 (2019)

Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imag. Sci. 8(1), 644–681 (2015)

Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imag. Sci. 9(4), 1756–1787 (2016)

Powell, M.J.D.: On search directions for minimization algorithms. Math. Program. 4(1), 193–201 (1973)

Razaviyayn, M., Hong, M., Luo, Z.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)

Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)

Rockafellar, R.T.: The Theory Of Subgradients And Its Applications To Problems Of Optimization - Convex And Nonconvex Functions. Heldermann, Heidelberg (1981)

Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Heidelberg (1998)

Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization methods. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 2101–2109. Curran Associates Inc. (2010)

Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

Sun, T., Barrio, R., Rodríguez, M., Jiang, H.: Inertial nonconvex alternating minimizations for the image deblurring. IEEE Trans. Image Process. 28(12), 6211–6224 (2019)

Sun, Y., Babu, P., Palomar, D.P.: Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 65(3), 794–816 (2017). https://doi.org/10.1109/TSP.2016.2601299

Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1), 387–423 (2009)

Udell, M., Horn, C., Zadeh, R., Boyd, S.: Generalized low rank models. Found. Trends Mach. Learn. 9(1), 1–118 (2016)

Udell, M., Townsend, A.: Why are big data matrices approximately low rank? SIAM J. Math. Data Sci. 1(1), 144–160 (2019)

Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78, 29–63 (2019). https://doi.org/10.1007/s10915-018-0757-z

Wang, Y., Zeng, J., Peng, Z., Chang, X., Xu, Z.: Linear convergence of adaptively iterative thresholding algorithms for compressed sensing. IEEE Trans. Signal Process. 63(11), 2957–2971 (2015)

Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2010)

Xu, M., Wu, T.: A class of linearized proximal alternating direction methods. J. Optim. Theory Appl. 151, 321–337 (2011). https://doi.org/10.1007/s10957-011-9876-5

Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758–1789 (2013). https://doi.org/10.1137/120887795

Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)

Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)

Yang, L., Pong, T.K., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imag. Sci. 10(1), 74–110 (2017). https://doi.org/10.1137/15M1027528

Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l(1)-minimization with applications to compressed sensing. SIAM J. Imag. Sci. 1, 143–168 (2008)