Inertial alternating direction method of multipliers for non-convex non-smooth optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1), 5–16 (2009)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods. Math. Program. 137(1), 91–129 (2013)
Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. (2011). https://doi.org/10.1561/2200000015
Beck, A., Tetruashvili, L.: On the convergence of block coordinate descent type methods. SIAM J. Optim. 23, 2037–2060 (2013)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)
Bot, R.I., Nguyen, D.K.: The proximal alternating direction method of multipliers in the nonconvex setting: convergence analysis and rates. Math. Oper. Res. 45(2), 682–712 (2020)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support vector machines. In: Proceeding of International Conference on Machine Learning ICML’98 (1998)
Buccini, A., Dell’Acqua, P., Donatelli, M.: A general framework for admm acceleration. Numer. Algorithms (2020). https://doi.org/10.1007/s11075-019-00839-y
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)
Canyi, L., Feng, J., Yan, S., Lin, Z.: A unified alternating direction method of multipliers by majorization minimization. IEEE Trans. Pattern Anal. Mach. Intell. 40, 527–541 (2018). https://doi.org/10.1109/TPAMI.2017.2689021
Chouzenoux, E., Pesquet, J.C., Repetti, A.: A block coordinate variable metric forward-backward algorithm. J. Glob. Optim. 66, 457–485 (2016)
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. Rice CAAM tech report TR12-14 66 (2012)
Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications to system identification and realization. SIAM J. Matrix Anal. Appl. 34(3), 946–977 (2013)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. ESAIM Math. Model. Numer. Anal. Modélisation Mathématique et Analyse Numérique 9(R2), 41–76 (1975)
Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear gauss-seidel method under convex constraints. Oper. Res. Lett. 26(3), 127–136 (2000)
Hien, L.T.K., Gillis, N., Patrinos, P.: Inertial block proximal method for non-convex non-smooth optimization. In: Thirty-Seventh International Conference on Machine Learning ICML 2020 (2020)
Hien, L.T.K., Phan, D.N., Gillis, N.: Inertial block majorization minimization framework for nonconvex nonsmooth optimization (2020). arXiv:2010.12133
Hong, M., Chang, T.H., Wang, X., Razaviyayn, M., Ma, S., Luo, Z.Q.: A block successive upper-bound minimization method of multipliers for linearly constrained convex optimization. Math. Oper. Res. 45(3), 833–861 (2020)
Huang, F., Chen, S., Huang, H.: Faster stochastic alternating direction method of multipliers for nonconvex optimization. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 97, pp. 2839–2848. PMLR (2019). http://proceedings.mlr.press/v97/huang19a.html
Huang, F., Chen, S., Lu, Z.: Stochastic alternating direction method of multipliers with variance reduction for nonconvex optimization (2016). arXiv:1610.02758
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
Lai, R., Osher, S.: A splitting method for orthogonality constrained problems. J. Sci. Comput. (2014). https://doi.org/10.1007/s10915-013-9740-x
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)
Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015). https://doi.org/10.1137/140998135
Li, H., Lin, Z.: Accelerated alternating direction method of multipliers: an optimal o(1 / k) nonergodic analysis. J. Sci. Comput. 79, 671–699 (2019)
Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low-rank representation. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 612–620. Curran Associates Inc. (2011)
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)
Liu, G., Yan, S.: Latent low-rank representation for subspace segmentation and feature extraction. In: 2011 International Conference on Computer Vision, pp. 1615–1622 (2011)
Liu, Q., Shen, X., Gu, Y.: Linearized admm for nonconvex nonsmooth optimization with convergence analysis. IEEE Access 7, 76131–76144 (2019)
Lu, C., Tang, J., Yan, S., Lin, Z.: Nonconvex nonsmooth low rank minimization via iteratively reweighted nuclear norm. IEEE Trans. Image Process. 25(2), 829–839 (2016)
Mairal, J.: Optimization with first-order surrogate functions. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, vol. 28, ICML’13, pp. 783–791. JMLR.org (2013)
Markovsky, I.: Low Rank Approximation: Algorithms, Implementation, Applications. vol. 906. Springer (2012)
Melo, J.G., Monteiro, R.D.C.: Iteration-complexity of a jacobi-type non-euclidean admm for multi-block linearly constrained nonconvex programs (2017)
Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publ. (2004)
Ochs, P.: Unifying abstract inexact convergence theorems and block coordinate variable metric ipiano. SIAM J. Optim. 29(1), 541–570 (2019)
Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imag. Sci. 8(1), 644–681 (2015)
Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imag. Sci. 9(4), 1756–1787 (2016)
Powell, M.J.D.: On search directions for minimization algorithms. Math. Program. 4(1), 193–201 (1973)
Razaviyayn, M., Hong, M., Luo, Z.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2013)
Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)
Rockafellar, R.T.: The Theory Of Subgradients And Its Applications To Problems Of Optimization - Convex And Nonconvex Functions. Heldermann, Heidelberg (1981)
Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization methods. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 2101–2109. Curran Associates Inc. (2010)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Sun, T., Barrio, R., Rodríguez, M., Jiang, H.: Inertial nonconvex alternating minimizations for the image deblurring. IEEE Trans. Image Process. 28(12), 6211–6224 (2019)
Sun, Y., Babu, P., Palomar, D.P.: Majorization-minimization algorithms in signal processing, communications, and machine learning. IEEE Trans. Signal Process. 65(3), 794–816 (2017). https://doi.org/10.1109/TSP.2016.2601299
Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)
Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1), 387–423 (2009)
Udell, M., Horn, C., Zadeh, R., Boyd, S.: Generalized low rank models. Found. Trends Mach. Learn. 9(1), 1–118 (2016)
Udell, M., Townsend, A.: Why are big data matrices approximately low rank? SIAM J. Math. Data Sci. 1(1), 144–160 (2019)
Wang, Y., Yin, W., Zeng, J.: Global convergence of admm in nonconvex nonsmooth optimization. J. Sci. Comput. 78, 29–63 (2019). https://doi.org/10.1007/s10915-018-0757-z
Wang, Y., Zeng, J., Peng, Z., Chang, X., Xu, Z.: Linear convergence of adaptively iterative thresholding algorithms for compressed sensing. IEEE Trans. Signal Process. 63(11), 2957–2971 (2015)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. 142, 397–434 (2010)
Xu, M., Wu, T.: A class of linearized proximal alternating direction methods. J. Optim. Theory Appl. 151, 321–337 (2011). https://doi.org/10.1007/s10957-011-9876-5
Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imag. Sci. 6(3), 1758–1789 (2013). https://doi.org/10.1137/120887795
Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. J. Sci. Comput. 72(2), 700–734 (2017)
Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31(4), 2842–2865 (2009)
Yang, L., Pong, T.K., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imag. Sci. 10(1), 74–110 (2017). https://doi.org/10.1137/15M1027528