Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các Mặt Động Tĩnh cho Phương Trình Smoluchowski trên Đơn Vị Cầu
Tóm tắt
Nghiên cứu sự tồn tại của các mặt động tĩnh cho phương trình Smoluchowski - một phương trình Fokker-Planck phi tuyến trên đơn vị cầu, xuất hiện trong mô hình hóa các huyền phù keo. Một phép biến đổi phi tuyến và phi địa phương được sử dụng để loại bỏ độ dốc khỏi thành phần phi tuyến.
Từ khóa
#phương trình Smoluchowski #mặt động tĩnh #phương trình Fokker-Planck #huyền phù keo #biến đổi phi tuyếnTài liệu tham khảo
Chow S.-N., Lu K. and Sell G.R. (1992). Smoothness of inertial manifolds. J. Math. Anal. Appl. 169: 283–312
Constantin P. (2007). Smoluchowski Navier-Stokes systems. Contemp. Math. 429: 85–109
Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral and inertial manifolds for dissipative partial differential equations. Applied Math. Sciences 70, New York: Springer-Verlag, 1989
Constantin P., Foias C., Nicolaenko B. and Temam R. (1988). Spectral barriers and inertial manifolds for dissipative partial differential equations. J. Dynam. Diff. Eq. 1: 45–73
Constantin P., Kevrekidis I. and Titi E.S. (2004). Remarks on a Smoluchowski equation. Dis. Cont. Dynam. Syst. 11(1): 101–112
Constantin P., Kevrekidis I. and Titi E.S. (2004). Asymptotic states of a Smoluchowski equation. Arch. Rat. Mech. Anal. 174: 365–384
Constantin P., Titi E.S. and Vukadinovic J. (2005). Dissipativity and Gevrey regularity of a Smoluchowski equation. Indiana Univ. Math. J. 54(44): 949–970
Constantin P. and Vukadinovic J. (2005). 2004 Note on the number of steady states for a 2D Smoluchowski equation 2005. Nonlinearity 18: 441–443
Prost J. and Gennes P.G. (1993). The physics of liquid crystals. Oxford University Press, Oxford
Doi M. (1981). Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci., Polym. Phys. Ed. 19: 229–243
Doi M. and Edwards S.F. (1986). The theory of polymer dynamics. Oxford University Press (Clarendon), London-NewYork
Faraoni F., Grosso M., Crescitelli S. and Maffetone P.L. (1999). The rigid rodmodel for nematic polymers: An analysis of the shear flow problem. J. Rheol. 43(3): 829–843
Fatkullin I. and Slastikov V. (2005). Critical points of the Onsager functional on a sphere. Nonlinearity 18: 2565–2580
Foias C., Nikolaenko B., Sell G.R. and Temam R. (1988). Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 67: 197–226
Foias C., Sell G.R. and Temam R. (1985). Variétés inertielles des équations differeéntielles dissipatives. C. R. Acad. Sci. Paris I 301: 285–288
Foias C., Sell G.R. and Temam R. (1988). Inertial manifolds for nonlinear evolutionary equations. J. Diff. Eq. 73: 309–353
Hess S.Z. (1976). Fokker-Planck-equation approach to flow alignment in liquid crystals. Z. Naturforsch. A 31 A: 1034–1037
Liu H., Zhang H. and Zhang P. (2005). Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential. Comm. Math. Sci. 3(2): 201–218
Luo C., Zhang H. and Zhang P. (2005). The structure of equilibrium solutions of one dimensional Doi equation. Nonlinearity 18: 379–389
Maffettone P.L. and Crescitelli S. (1995). Bifurcation analysis of a molecular model for nematic polymers in shear flows. J. Non-Newtonian Fluid Mech. 59: 73–91
Mallet-Paret J. and Sell G.R. (1988). Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Amer. Math. Soc. 1: 805–866
Maier W. and Saupe A. (1959). Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen phase, tail I. Z. Naturforsch. A 14 A: 882–889
Onsager L. (1949). The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci 51: 627–659
Robinson J.C. (1993). Inertial manifolds and the cone condition. Dyn. Sys. Appl. 2: 311–330
Robinson J.C. (1995). A concise proof of the geometric construction of inertial manifolds. Phys. Lett. A 200: 415–417
Vukadinovic, J.: Inertial manifolds for a Smoluchowski equation on a circle. Available at http://www.math.csi.cuny.edu/~vukadino/papers/pub7.pdf, 2007
Wells, J.H., Williams, L.R.: Embeddings and extensions in analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete. New York-Hedelberg: Springer Verlag, 1975