Các Mặt Động Tĩnh cho Phương Trình Smoluchowski trên Đơn Vị Cầu

Springer Science and Business Media LLC - Tập 285 - Trang 975-990 - 2008
Jesenko Vukadinovic1
1Department of Mathematics, CUNY-College of Staten Island, Staten Island, USA

Tóm tắt

Nghiên cứu sự tồn tại của các mặt động tĩnh cho phương trình Smoluchowski - một phương trình Fokker-Planck phi tuyến trên đơn vị cầu, xuất hiện trong mô hình hóa các huyền phù keo. Một phép biến đổi phi tuyến và phi địa phương được sử dụng để loại bỏ độ dốc khỏi thành phần phi tuyến.

Từ khóa

#phương trình Smoluchowski #mặt động tĩnh #phương trình Fokker-Planck #huyền phù keo #biến đổi phi tuyến

Tài liệu tham khảo

Chow S.-N., Lu K. and Sell G.R. (1992). Smoothness of inertial manifolds. J. Math. Anal. Appl. 169: 283–312 Constantin P. (2007). Smoluchowski Navier-Stokes systems. Contemp. Math. 429: 85–109 Constantin, P., Foias, C., Nicolaenko, B., Temam, R.: Integral and inertial manifolds for dissipative partial differential equations. Applied Math. Sciences 70, New York: Springer-Verlag, 1989 Constantin P., Foias C., Nicolaenko B. and Temam R. (1988). Spectral barriers and inertial manifolds for dissipative partial differential equations. J. Dynam. Diff. Eq. 1: 45–73 Constantin P., Kevrekidis I. and Titi E.S. (2004). Remarks on a Smoluchowski equation. Dis. Cont. Dynam. Syst. 11(1): 101–112 Constantin P., Kevrekidis I. and Titi E.S. (2004). Asymptotic states of a Smoluchowski equation. Arch. Rat. Mech. Anal. 174: 365–384 Constantin P., Titi E.S. and Vukadinovic J. (2005). Dissipativity and Gevrey regularity of a Smoluchowski equation. Indiana Univ. Math. J. 54(44): 949–970 Constantin P. and Vukadinovic J. (2005). 2004 Note on the number of steady states for a 2D Smoluchowski equation 2005. Nonlinearity 18: 441–443 Prost J. and Gennes P.G. (1993). The physics of liquid crystals. Oxford University Press, Oxford Doi M. (1981). Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases. J. Polym. Sci., Polym. Phys. Ed. 19: 229–243 Doi M. and Edwards S.F. (1986). The theory of polymer dynamics. Oxford University Press (Clarendon), London-NewYork Faraoni F., Grosso M., Crescitelli S. and Maffetone P.L. (1999). The rigid rodmodel for nematic polymers: An analysis of the shear flow problem. J. Rheol. 43(3): 829–843 Fatkullin I. and Slastikov V. (2005). Critical points of the Onsager functional on a sphere. Nonlinearity 18: 2565–2580 Foias C., Nikolaenko B., Sell G.R. and Temam R. (1988). Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension. J. Math. Pures Appl. 67: 197–226 Foias C., Sell G.R. and Temam R. (1985). Variétés inertielles des équations differeéntielles dissipatives. C. R. Acad. Sci. Paris I 301: 285–288 Foias C., Sell G.R. and Temam R. (1988). Inertial manifolds for nonlinear evolutionary equations. J. Diff. Eq. 73: 309–353 Hess S.Z. (1976). Fokker-Planck-equation approach to flow alignment in liquid crystals. Z. Naturforsch. A 31 A: 1034–1037 Liu H., Zhang H. and Zhang P. (2005). Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential. Comm. Math. Sci. 3(2): 201–218 Luo C., Zhang H. and Zhang P. (2005). The structure of equilibrium solutions of one dimensional Doi equation. Nonlinearity 18: 379–389 Maffettone P.L. and Crescitelli S. (1995). Bifurcation analysis of a molecular model for nematic polymers in shear flows. J. Non-Newtonian Fluid Mech. 59: 73–91 Mallet-Paret J. and Sell G.R. (1988). Inertial manifolds for reaction diffusion equations in higher space dimensions. J. Amer. Math. Soc. 1: 805–866 Maier W. and Saupe A. (1959). Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen phase, tail I. Z. Naturforsch. A 14 A: 882–889 Onsager L. (1949). The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci 51: 627–659 Robinson J.C. (1993). Inertial manifolds and the cone condition. Dyn. Sys. Appl. 2: 311–330 Robinson J.C. (1995). A concise proof of the geometric construction of inertial manifolds. Phys. Lett. A 200: 415–417 Vukadinovic, J.: Inertial manifolds for a Smoluchowski equation on a circle. Available at http://www.math.csi.cuny.edu/~vukadino/papers/pub7.pdf, 2007 Wells, J.H., Williams, L.R.: Embeddings and extensions in analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete. New York-Hedelberg: Springer Verlag, 1975