Inelastic Properties of Amorphous and Nanocrystalline Fe–P–Mn–V Alloys

Inorganic Materials - Tập 40 - Trang 815-821 - 2004
V. V. Vavilova1, D. A. Vygovskii2, Yu. E. Kalinin2, Yu. K. Kovneristyi1, N. A. Palii1
1Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
2Voronezh State Technical University, Voronezh, Russia

Tóm tắt

The processes occurring in amorphous Fe–P–Mn–V alloys at elevated temperatures, up to the crystallization temperature, are investigated by internal friction measurements and x-ray diffraction analysis. The results are used to evaluate the activation energy of defect migration and the particle size of the crystalline phases precipitating in the alloys during annealing. It is shown that increasing the vanadium content of amorphous Fe–P–Mn–V alloys increases the energy of defect migration and reduces the particle size of the precipitating phases.

Tài liệu tham khảo

Levintov, B.L., Bashaeva, L.A., Kovneristyi, Yu.K.,et al., RF Patent 2075871, 1994. Walsh, F.C. and Herron, M.E., Electrocrystallization and Electrochemical Control of Crystal Growth: Fundamental Considerations and Electrodeposition of Metals, J.Phys. D: Appl. Phys., 1991, vol. 24, pp. 217-225. Vavilova, V.V., Palii, N.A., Kovneristyi, Yu.K., and Timofeev, V.N.,Nanocrystalline Fe-P-Si Alloys, Neorg. Mater., 2000, vol. 36, no. 8, pp. 945–949 [Inorg. Mater. (Engl. Transl.), vol. 36, no. 8, pp. 783-787]. Vavilova, V.V., Kovneristyi, Yu.K., and Levintov, M.B., Phase Equilibria and Susceptibility to Amorphization in Alloys of the Fe-P-Mn System, Neorg. Mater., 1993, vol. 29, no. 6, pp. 770–774 [Inorg. Mater. (Engl. Transl.), vol. 29, no. 6, pp. 665-668]. Vavilova, V.V., Kovneristyi, Yu.K., and Palii, N.A., Physicochemical Properties of Amorphous and Crystalline Fe-P-Mn and Fe-P-Mn-V Alloys, Neorg. Mater., 2001, vol. 37, no. 2, pp. 217–220 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 2, pp. 166-169]. Vogel, R. and Berax, J., Das System Eisen-Phosphor-Mangan, Arch. Eisenhuttenwes., 1952, vol. 23, no. 5/6 Vogel, R. and Berax, J., Das System Eisen-Phosphor-Vanadium, Arch. Eisenhuttenwes., 1955, vol. 23, no. 9, pp. 547–554. Hall, E.O. and Algie, S.H., The Sigma Phase, J. Inst. Met., 1966, vol. 94, no. 4, pp. 60–88. Belonogov, V.K., Zolotukhin, I.V., Ievlev, V.M., and Postnikov, V.S., Internal Friction in Aluminum Films, Fiz. Khim. Obrab. Mater., 1968, no. 5, pp. 161–162. Zolotukhin, I.V. and Kalinin, Yu.E., High-Temperature Internal-Friction Background in Crystalline and Amorphous Solids, Fiz. Tverd. Tela (S.-Peterburg), 1995, vol. 57, no. 2, pp. 536–545. Kobelev, N.P., Soifer, Ya.M., Brodova, I.P., and Manukhin, A.N., Internal Friction and Nanocrystallization-Induced Young's Modulus Changes in Amorphous Mg-Ni-Y Alloys, Fiz. Tverd. Tela (S.-Peterburg), 1999, vol. 41, pp. 561–566. Vavilova, V.V. and Baldokhin, Yu.V., Mössbauer Spectroscopy Study of Rapidly Quenched Fe-P-M (M = V, Nb, Mo, Mn, Si) Alloys, Metally, 1999, no. 1, pp. 103-112. Kulik, T., Nanocrystallization of Metallic Glasses, J. Non-Cryst. Solids, 2001, vol. 287, pp. 145–161.