Industrial biotechnology of Pseudomonas putida and related species

Springer Science and Business Media LLC - Tập 93 Số 6 - Trang 2279-2290 - 2012
Ignacio Poblete‐Castro1, Judith Becker2, Katrin Dohnt2, Vítor A. P. Martins dos Santos1, Christoph Wittmann2
1HZI-Helmholtz Centre for Infection Research, Systems and Synthetic Biology, Braunschweig, Germany
2Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstrasse 17, 38106 Braunschweig, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albuquerque MGE, Martino V, Pollet E, AvErous L, Reis MAM (2011) Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol 151:66–76

Benndorf D, Thiersch M, Loffhagen N, Kunath C, Harms H (2006) Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites. Proteomics 6:3319–3329

Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid R, Altenbuchner J, Urlacher V (2011) Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. App Microbiol Biotechnol 89:1137–1147

Blank LM, Ionidis G, Ebert BE, Buhler B, Schmid A (2008a) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008b) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190

Bolten CJ, Kiefer P, Letisse F, Portais JC, Wittmann C (2007) Sampling for metabolome analysis of microorganisms. Anal Chem 79:3843–3849

Bosetti A, van Beilen JB, Preusting H, Lageveen RG, Witholt B (1992) Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enzyme Microb Tech 14:702–708

Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R (2011) Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bioresour Technol 102:7004–7007

Ciesielski S, Pokoj T, Klimiuk E (2010) Cultivation-dependent and -independent characterization of microbial community producing polyhydroxyalkanoates from raw glycerol. J Microbiol Biotechnol 20:853–861

De Lorenzo V (1994) Designing microbial systems for gene expression in the field. Trends Biotechnol 12:365–371

De Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposoon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572

De Lorenzo V, Herrero M, Sanchez JM, Timmis K (1998) Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol Ecol 27:211–224

Dean HF, Cheevadhanarak S, Skurray RA, Bayly RC (1989) Characterisation of a degradative plasmid in Pseudomonas putida that controls the expression of 2,4-xylenol degradative genes. FEMS Microbiol Lett 61:153–157

Del Castillo T, Ramos JL (2007) Simultaneous catabolite repression between glucose and toluene metabolism in Pseudomonas putida is channeled through different signaling pathways. J Bacteriol 189:6602–6610

Del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152

del Castillo T, Duque E, Ramos JL (2008) A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190:2331–2339

Dominguez-Cuevas P, Gonzalez-Pastor JE, Marques S, Ramos JL, De Lorenzo V (2006) Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J Biol Chem 281:11981–11991

Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from d-glucose. J Am Chem Soc 116:399–400

Dunn NW, Gunsalus IC (1973) Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol 114:974–979

Duque E, Molina-Henares AJ, de la Torre J, Molina-Henares MA, del Castillo T, Lam J, Ramos JL (2007) Towards a genome-wide mutant library of Pseudomonas putida strain KT2440. In: Ramos JL, Filloux A (eds) Pseudomonas. Springer, Netherlands, pp 227–251

Ebert BE, Kurth F, Grund M, Blank LM, Schmid A (2011) Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Appl Environ Microbiol 77:6597–6605

Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75:643–651

Escapa I, Morales V, Martino V, Pollet E, Averous L, Garcia J, Prieto M (2011) Disruption of B-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598

Faizal I, Dozen K, Hong CS, Kuroda A, Takiguchi N, Ohtake H, Takeda K, Tsunekawa H, Kato J (2005) Isolation and characterization of solvent-tolerant Pseudomonas putida strain T-57, and its application to biotransformation of toluene to cresol in a two-phase (organic-aqueous) system. J Ind Microbiol Biotechnol 32:542–547

Fonseca P, Moreno R, Rojo F (2008) Genomic analysis of the role of RNase R in the turnover of Pseudomonas putida mRNAs. J Bacteriol 190:6258–6263

Fu J, Wenzel SC, Perlova O, Wang J, Gross F, Tang Z, Yin Y, Stewart AF, Müller R, Zhang Y (2008) Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Res 36:e113

Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590

Gross F, Gottschalk D, Müller R (2005) Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase. Appl Microbiol Biotechnol 68:66–74

Gross F, Ring MW, Perlova O, Fu J, Schneider S, Gerth K, Kuhlmann S, Stewart AF, Zhang Y, Müller R (2006) Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. Chem Biol 13:1253–1264

Gross R, Lang K, Bühler K, Schmid A (2010) Characterization of a biofilm membrane reactor and its prospects for fine chemical synthesis. Biotechnol Bioeng 105:705–717

Halan B, Schmid A, Buehler K (2010) Maximizing the productivity of catalytic biofilms on solid supports in membrane aerated reactors. Biotechnol Bioeng 106:516–527

Halan B, Schmid A, Buehler K (2011) Real-time solvent tolerance analysis of Pseudomonas sp. strain VLB120ΔC catalytic biofilms. Appl Environ Microbiol 77:1563–1571

Heim S, Ferrer M, Heuer H, Regenhardt D, Nimtz M, Timmis KN (2003) Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ Microbiol 5:1257–1269

Hermes HFM, Sonke T, Peters PJH, van Balken JAM, Kamphuis J, Dijkhuizen L, Meijer EM (1993) Purification and characterization of an l-aminopeptidase from Pseudomonas putida ATCC 12633. Appl Environ Microbiol 59:4330–4334

Herrmann H, Janke D, Krejsa S, Kunze I (1987) Involvement of the plasmid pPGH1 in the phenol degradation of Pseudomonas putida strain H. FEMS Microbiol Lett 43:133–137

Hervas AB, Canosa I, Santero E (2008) Transcriptome analysis of Pseudomonas putida in response to nitrogen availability. J Bacteriol 190:416–420

Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7

Hüsken LE, Beeftink R, De Bont JAM, Wery J (2001) High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system. Appl Microbiol Biotechnol 55:571–577

Jimenez JI, Miambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841

Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Proc Biochem 40:607–619

Kiener A (1992) Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angewandte Chem Inter Edition Engl 31:774–775

Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, Yoo JS, Kim SI (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6:1301–1318

Koutinas M, Lam MC, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, de Lorenzo V, Dos Santos VA, Mantalaris A (2010) The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 12:1705–1718

Koutinas M, Kiparissides A, Lam MC, Silva-Rocha R, Godinho M, de Lorenzo V, Martins dos Santos VAP, Pistikopoulos EN, Mantalaris A (2011) Improving the prediction of Pseudomonas putida mt-2 growth kinetics with the use of a gene expression regulation model of the TOL plasmid. Biochem Eng J 55:108–118

Krayl M, Benndorf D, Loffhagen N, Babel W (2003) Use of proteomics and physiological characteristics to elucidate ecotoxic effects of methyl tert-butyl ether in Pseudomonas putida KT2440. Proteomics 3:1544–1552

Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

Leprince A, Janus D, de Lorenzo V, Santos VM, Weber W, Fussenegger M (2012) Streamlining of a Pseudomonas putida genome using a combinatorial deletion method based on minitransposon insertion and the Flp-FRT recombination system. Methods Mol Biol 813:249–266

Liu W, Chen GQ (2007) Production and characterization of medium-chain-length polyhydroxyalkanoate with high 3-hydroxytetradecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Appl Microbiol Biotechnol 76:1153–1159

Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metabol Eng 13:11–17

Malik M, Ganguli A, Ghosh M (2011) Enhancement of bioconversion efficiency of limonin by Pseudmonas putida G7. Int J Food Sci Nutr 63:59–65

Martin CH, Wu D, Prather KLJ (2010) Integrated bioprocessing for the pH-Dependent Production of 4-Valerolactone from Levulinate in Pseudomonas putida KT2440. Appl Environ Microb 76:417–424

Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547

Martinez-Garcia E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716

Martins Dos Santos VAP, Heim S, Moore ERB, Strätz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286

Meijnen JP, De Winde JH, Ruijssenaars HJ (2008) Engineering Pseudomonas putida S12 for efficient utilization of d-xylose and l-arabinose. Appl Environ Microbiol 74:5031–5037

Meijnen JP, De Winde JH, Ruijssenaars HJ (2009) Establishment of oxidative d-xylose metabolism in Pseudomonas putida S12. Appl Environ Microbiol 75:2784–2791

Meijnen JP, Verhoef S, Briedjlal AA, De Winde JH, Ruijssenaars HJ (2011) Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy. Appl Microbiol Biot 90:885–893

Miyakoshi M, Shintani M, Terabayashi T, Kai S, Yamane H, Nojiri H (2007) Transcriptome analysis of Pseudomonas putida KT2440 harboring the completely sequenced IncP-7 plasmid pCAR1. J Bacteriol 189:6849–6860

Morales G, Ugidos A, Rojo F (2006) Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases. Environ Microbiol 8(10):1764–1774

Moreno R, Martinez-Gomariz M, Yuste L, Gil C, Rojo F (2009) The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9:2910–2928

Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt 2: demonstration of two benzoate pathways. J Bacteriol 115:262–267

Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

Niewerth H, Bergander K, Chhabra SR, Williams P, Fetzner S (2011) Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440. Appl Microbiol Biot 91:1399–1408

Nijkamp K, Westerhof RGM, Ballerstedt H, De Bont JAM, Wery J (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl Microbiol Biotechnol 74:617–624

Nikodinovic-Runic J, Flanagan M, Hume AR, Cagney G, O'Connor KE (2009) Analysis of the Pseudomonas putida CA-3 proteome during growth on styrene under nitrogen-limiting and non-limiting conditions. Microbiol 155:3348–3361

Nogales J, Palsson BO, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79

Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, Chen GQ (2007) Production of polyhydroxyalkanoates with high 3-hydroxydodecanoate monomer content by fadB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 8:2504–2511

Patel RN, Banerjee A, Ko RY, Howell JM, Li Wen S, Comezoglu FT, Partyka RA, Szarka L (1994) Enzymic preparation of (3R-cis)-3-(acetyloxy)-4-phenyl-2-azetidinone: a taxol side-chain synthon. Biotechnol Appl Biochem 20:23–33

Prakash D, Pandey J, Tiwary B, Jain R (2010) A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol). BMC Biotechnol 10:49

Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210

Rehm BHA (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–592

Renzi F, Rescalli E, Galli E, Bertoni G (2010) Identification of genes regulated by the MvaT-like paralogues TurA and TurB of Pseudomonas putida KT2440. Environ Microbiol 12:254–263

Reva ON, Weinel C, Weinel M, Bohm K, Stjepandic D, Hoheisel JD, Tummler B (2006) Functional genomics of stress response in Pseudomonas putida KT2440. J Bacteriol 188:4079–4092

Ronchel MC, Molina L, Witte A, Lutbiz W, Molin S, Ramos JL, Ramos C (1998) Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes. Appl Environ Microbiol 64:4904–4911

Rosche B, Li XZ, Hauer B, Schmid A, Buehler K (2009) Microbial biofilms: a concept for industrial catalysis? Trends Biotechnol 27:636–643

Rühl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656

Santos PM, Benndorf D, Sa-Correia I (2004) Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:2640–2652

Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nat 409:258–268

Schulze B, Wubbolts MG (1999) Biocatalysis for industrial production of fine chemicals. Curr Opinion Biotechnol 10:609–615

Segura A, Godoy P, Van Dillewijn P, Hurtado A, Arroyo N, Santacruz S, Ramos JL (2005) Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J Bacteriol 187:5937–5945

Silva-Rocha R, de Jong H, Tamames J, de Lorenzo V (2011) The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC Syst Biol 5:191

Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750

Stephan S, Heinzle E, Wenzel SC, Krug D, Müller R, Wittmann C (2006) Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide. Proc Biochem 41:2146–2152

Stieglitz B, Dicosimo R, Fallon RD (1996) Formation of aliphatic ω-cyanocarboxamide(s) from α,ω-dinitrile(s)—using bio-catalyst having regioselective nitrile hydratase activity derived from Pseudomonas putida. US Patent US 5728556

Sun Z, Ramsay J, Guay M, Ramsay B (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431

Sun Z, Ramsay J, Guay M, Ramsay B (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 74:69–77

Sun Z, Ramsay J, Guay M, Ramsay B (2009) Fed-batch production of unsaturated medium-chain-length polyhydroxyalkanoates with controlled composition by Pseudomonas putida KT2440. Appl Microbiol Biotechnol 82:657–662

Tang H, Yu H, Li Q, Wang X, Gai Z, Yin G, Su F, Tao F, Ma C, Xu P (2011) Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J Bacteriol 193:6789–6790

Tao F, Tang H, Gai Z, Su F, Wang X, He X, Xu P (2011a) Genome sequence of Pseudomonas putida Idaho, a unique organic-solvent-tolerant bacterium. J Bacteriol 193:7011–7012

Tao F, Liu Y, Luo Q, Su F, Xu Y, Li F, Yu B, Ma C, Xu P (2011b) Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresour Technol 102:9380–9387

Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

Tsirogianni E, Aivaliotis M, Papasotiriou DG, Karas M, Tsiotis G (2006) Identification of inducible protein complexes in the phenol degrader Pseudomonas sp. strain phDV1 by blue native gel electrophoresis and mass spectrometry. Amin Ac 30:63–72

Ütkur FO, Gaykaward S, Buehler B, Schmid A (2011) Regioselective aromatic hydroxylation of quinaldine by water using quinaldine 4-oxidase in recombinant Pseudomonas putida. J Ind Microb Biotechnol 38:1067–1073

Van Der Werf MJ, Overkamp KM, Muilwijk B, Koek MM, Van Der Werff-Van Der Vat BJC, Jellema RH, Coulier L, Hankemeier T (2008) Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Mol Biosyst 4:315–327

Van Duuren JBJH (2011) Optimization of Pseudomonas putida KT2440 as host for the production of cis, cis-muconate from benzoate. Dissertation. Wageningen University, The Netherlands

Van Duuren JBJH, Brehmer B, Mars AE, Eggink G, dos Santos VM, Sanders JPM (2011a) A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol Bioeng 108:1298–1306

Van Duuren JBJH, Wijte D, Karge B, Martins dos Santos VA, Yang Y, Mars AE, Eggink G (2011b) pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol Prog (in press)

Van Duuren JBJH, Wijte D, Leprince A, Karge B, Puchalka J, Wery J, Dos Santos VAPM, Eggink G, Mars AE (2011c) Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J Biotechnol 156:163–172

Verhoef S, Ruijssenaars HJ, de Bont JAM, Wery J (2007) Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. J Biotechnol 132:49–56

Verhoef S, Wierckx N, Westerhof RGM, De Winde JH, Ruijssenaars HJ (2009) Bioproduction of p-hydroxystyrene from glucose by the solvent-tolerant bacterium Pseudomonas putida S12 in a two-phase water-decanol fermentation. Appl Environ Microbiol 75:931–936

Verhoef S, Ballerstedt H, Volkers RJM, De Winde JH, Ruijssenaars HJ (2010) Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement. Appl Microbiol Biotechnol 87:679–690

Volkers RJM, De Jong AL, Hulst AG, Van Baar BLM, De Bont JAM, Wery J (2006) Chemostat-based proteomic analysis of toluene-affected Pseudomonas putida S12. Environ Microbiol 8:1674–1679

Wang HH, Zhou XR, Liu Q, Chen GQ (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507

Wenzel SC, Gross F, Zhang Y, Fu J, Stewart AF, Müller R (2005) Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via Red/ET recombineering. Chem Biol 12:349–356

Wierckx NJP, Ballerstedt H, De Bont JAM, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71:8221–8227

Wierckx NJP, Ballerstedt H, De Bont JAM, De Winde JH, Ruijssenaars HJ, Wery J (2008) Transcriptome analysis of a phenol-producing Pseudomonas putida S12 construct: genetic and physiological basis for improved production. J Bacteriol 190:2822–2830

Wierckx N, Ruijssenaars HJ, de Winde JH, Schmid A, Blank LM (2009) Metabolic flux analysis of a phenol producing mutant of Pseudomonas putida S12: verification and complementation of hypotheses derived from transcriptomics. J Biotechnol 143:124–129

Wolff JA, MacGregor CH, Eisenberg RC, Phibbs PV Jr (1991) Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa pao. J Bacteriol 173:4700–4706

Wong JW, Watson HA, Bouressa JF, Burns MP, Cawley JJ, Doro AE, Guzek DB, Hintz MA, McCormick EL, Scully DA et al (2002) Biocatalytic oxidation of 2-methylquinoxaline to 2-quinoxalinecarboxylic acid. Org Proc Res Devel 6:477–481

Wu B, Bai Z, Meng X, He B (2010) Efficient production of D-glucosaminic acid from D-glucosamine by Pseudomonas putida GNA5. Biotechnol Prog 27:32–37

Yang T, Jung Y, Kang H, Kim T, Park S, Lee S (2011) Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl Microbiol Biotechnol 90:603–614

Yeom S, Yeom J, Park W (2010) NtrC-sensed nitrogen availability is important for oxidative stress defense in Pseudomonas putida KT2440. J Microbiol 48:153–159

Yu H, Tang H, Wang L, Yao Y, Wu G, Xu P (2011) Complete genome sequence of the nicotine-degrading Pseudomonas putida strain S16. J Bacteriol 193:5541–5542

Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72:797–803