Industrial applications of immobilized enzymes—A review

Molecular Catalysis - Tập 479 - Trang 110607 - 2019
Alessandra Basso1, Sever Şerban1
1Purolite, Unit D, Llantrisant Business Park, Llantrisant, CF72 8LF, United Kingdom

Tóm tắt

Từ khóa


Tài liệu tham khảo

F. Balkenhohl, K. Ditrich, C. Nübling, Racemate Separation of Primary and Secondary Heteroatom-substituted Amine by Enzyme-Catalysed Acylation, WO1996023894A1, 1995.

Savile, 2010, Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture, Science, 329, 305, 10.1126/science.1188934

Neuberg, 1914, Phytochemical reactions III. Transformation of aromatic and fatty aromatic aldehydes into alcohols, Biochem. Z., 62, 477

Bornscheuer, 2012, Engineering the third wave of biocatalysis, Nature, 485, 185, 10.1038/nature11117

Bornscheuer, 2017, The fourth wave of biocatalysis is approaching, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376, 1

Hauer, 2011

Sellappan, 2005, Application of lipases in modifications of food lipids

Tufvesson, 2010, Process considerations for the scale-up and implementation of biocatalysis, Food Bioprod. Process., 88, 3, 10.1016/j.fbp.2010.01.003

Rodrigues, 2019, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnol. Adv., 37, 746, 10.1016/j.biotechadv.2019.04.003

Ortiz, 2019, Novozym 435: the “perfect” lipase immobilized biocatalyst?, Catal. Sci. Technol., 9, 2380, 10.1039/C9CY00415G

De Simone, 2019, Immobilized enzyme reactors: an overview of applications in drug discovery from 2008 to 2018, Chromatographia, 82, 425, 10.1007/s10337-018-3663-5

Thompson, 2019, Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals, Org. Process Res. Dev., 23, 9, 10.1021/acs.oprd.8b00305

Bernal, 2018, Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts, Biotechnol. Adv., 36, 1470, 10.1016/j.biotechadv.2018.06.002

Homaei, 2015, Enzyme immobilization and its application in the food industry

Facin, 2019, Driving immobilized lipases as biocatalysts: 10 years state of the art and future prospects, Ind. Eng. Chem. Res., 58, 5358, 10.1021/acs.iecr.9b00448

DiCosimo, 2013, Industrial use of immobilized enzymes, Chem. Soc. Rev., 42, 6437, 10.1039/c3cs35506c

Tufvesson, 2011, Guidelines and cost analysis for catalyst production in biocatalytic processes, Org. Process Res. Dev., 15, 266, 10.1021/op1002165

Lindeque, 2019, Reactor selection for effective continuous biocatalytic production of pharmaceuticals, Catalysts, 9, 262, 10.3390/catal9030262

Illanes, 2008, Enzyme reactors, 205

2013

Crabb, 1999, Commodity scale production of sugars from starches, Curr. Opin. Microbiol., 2, 252, 10.1016/S1369-5274(99)80044-7

Chen, 1980, Glucose isomerase, Process Biochem., 15, 30

Bhosale, 1996, Molecular and industrial aspects of glucose isomerase, Microbiol. Rev., 60, 280, 10.1128/MR.60.2.280-300.1996

Jensen, 1987, Industrial-scale production and application of immobilized glucose isomerase, 356

G.E. Nedwin, V. Sharma, J.K. Shetty, Alpha-amylase blend for starch processing and method of use thereof, US 2014/0087429 A1, 2014.

CFR - Code of Federal Regulations Title 21 CFR 173.357, (n.d.). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=173.357 (Accessed 12 February 2019).

Efficient conversion of dextrose to fructose | Novozymes, (n.d.). https://www.novozymes.com/en/advance-your-business/food-and-beverage/starch/sweetzyme (Accessed 1 August 2019).

Zittan, 1975, Sweetzyme - A New Immobilized Glucose Isomerase, Starch - Stã¤rke, 27, 236, 10.1002/star.19750270705

Jørgensen, 1988, A new immobilized glucose isomerase with high productivity produced by a strain of Streptomyces murinus, Starch - Stãrke, 40, 307, 10.1002/star.19880400809

Deok-kun Oh, H.-J. Kim, Y.-J. Lee, S.-H. Song, S.-W. Park, J.-H. Kim, S.-B. Kim, D-psicose production method by D-psicose epimerase, US2011/8030035B2, 2011.

K. Maruta, K. Yamamoto, T. Nishimoto, H. Chaen, T. Nakada, Ketose 3-epimerase, its preparation and uses, US2011/0275138A1, 2011.

Y.H. Hong, J.H. Kim, S.B. Kim, J.H. Kim, Y.M. LEE, Immobilization of psicose-epimerase and a method of producing d-psicose using the same, WO 2011/040708 A3, 2011.

R.D. Woodyer, R.W. Armentrout, 3-Epimerase, WO 2014/049373, 2014.

R.D. Woodyer, J.C. Cohen, J.R. Bridges, Sweetener, US 2017/ 9635879 B2, 2017.

Tate & Lyle Introduces DOLCIA PRIMA® Crystalline Allulose; Low-Calorie Solution Provides the Full Taste and Enjoyment of Sugar, But Without All the Calories, (n.d.). https://www.tateandlyle.com/news/tate-lyle-introduces-dolcia-prima-crystalline-allulose-low-calorie-solution-provides-full (Accessed 2 January 2019).

J. Chini, B. Febbruari, M. Matulli, L. Vagnoli, Enzymes immobilized on styrene-divinyl benzene matrices and the use thereof in industrial productions., WO2014/006606 A1, 2014.

Lim, 2008, Tagatose Production with pH Control in a Stirred Tank Reactor Containing Immobilized L-Arabinose Isomerase from Thermotoga neapolitana, Appl. Biochem. Biotechnol., 149, 245, 10.1007/s12010-007-8095-x

Oh, 2007, properties, applications, and biotechnological processes, Appl. Microbiol. Biotechnol., 76, 1, 10.1007/s00253-007-0981-1

P. Kim, H. Roh, S. Yoon, J. Choi, Biological tagatose production by recombinant escherichia coli, WO 00/68397, 1999.

Kovács, 2014, Recent developments in manufacturing oligosaccharides with prebiotic functions, 257

Park, 2010, Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives, Appl. Microbiol. Biotechnol., 85, 1279, 10.1007/s00253-009-2356-2

Camara, 2017, Fiber compounds and human health, Curr. Pharm. Des., 23, 10.2174/1381612823666170216123219

Xavier, 2018, β-galactosidase: Biotechnological applications in food processing, J. Food Biochem., 42, 10.1111/jfbc.12564

Basso, 2002, Synthesis of octyl glucopyranoside by almond b-glucosidase adsorbed onto Celite R-640 ®, Tetrahedron Lett., 43, 2005, 10.1016/S0040-4039(02)00197-1

Huerta, 2010, Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized beta-galactosidases from Aspergillus oryzae, Process Biochem., 46, 245, 10.1016/j.procbio.2010.08.018

Gaur, 2006, Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae b-galactosidase, Food Chem., 97, 426, 10.1016/j.foodchem.2005.05.020

F. Benjamins, L. Cao, A. Broekhuis, Production of galacto-oligosaccharides, WO 2015/034356A1, 2015.

Burham, 2009, Enzymatic synthesis of palm-based ascorbyl esters, J. Mol. Catal. B Enzym., 58, 153, 10.1016/j.molcatb.2008.12.012

Ferreira-Dias, 2013, The potential use of lipases in the production of fatty acid derivatives for the food and nutraceutical industries, Electron. J. Biotechnol., 16

Villeneuve, 2007, Lipases in lipophilization reactions, Biotechnol. Adv., 25, 515, 10.1016/j.biotechadv.2007.06.001

Stevenson, 1979, Enzymatic acyl exchange to vary saturation in di- and triglycerides, J. Am. Oil Chem. Soc., 56, 676, 10.1007/BF02660072

Ahmadi, 2009, Structural and mechanical behavior of tristearin/triolein-rich mixtures and the modification achieved by interesterification, Food Biophys., 4, 64, 10.1007/s11483-009-9102-2

Dijkstra, 2013

Willis, 2002, Enzymatic interesterification, 839

Xu, 2006, Chemical and enzymatic interesterification of lipids for use in food, 234

Hou, 2005

Asif, 2011, Process advantages and product benefits of interesterification in oils and fats, Int. J. Nutr. Pharmacol. Neurol. Dis., 1, 134, 10.4103/2231-0738.84203

M.H. Coleman, A.R. Macrae, Fat process and composition, US4275081, 1979.

M. Coleman, A. Macrae, Fat process and composition, GB 1577933, 1976.

P. Halling, A. Macrae, Fat processing, US4863860, 1989.

Wisdom, 1984, Enzymic interesterification of fats: factors influencing the choice of support for immobilized lipase, Enzyme Microb. Technol., 6, 443, 10.1016/0141-0229(84)90093-0

Macrae, 1985, Microbial lipases as catalysts for the interesterification of oils and fats, 189

Sawamura, 1988, Transesterification of fats and oils, Ann. N. Y. Acad. Sci., 542, 266, 10.1111/j.1749-6632.1988.tb25840.x

T. Matsuo, N. Sawamura, Y. Hashimoto, W. Hashida, Method for enzymatic interesterification of lipid and enzyme used therein, EP0035883, 1981.

A. Svendsen, M. Skjot, J. Brask, J. Vind, S.A. Patkar, Immobilised enzymes, WO 2007/080197 A2, 2007.

Fernandez-Lafuente, 2010, Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst, J. Mol. Catal. B Enzym., 62, 197, 10.1016/j.molcatb.2009.11.010

Holm, 2008, The evolution of enzymatic interesterification in the oils and fats industry, Eur. J. Lipid Sci. Technol., 110, 679, 10.1002/ejlt.200800100

De Greyt, 2008, Fractionation and interesterification, 181

Gambelli, 2015, Glyceride composition, WO 2015/014967 Al

Akoh, 2002, Enzymatic production of Betapol and other specialty fats, 461

Radack, 1991, The effects of low doses of n-3 fatty acid supplementation on blood pressure in hypertensive subjects, Arch. Intern. Med., 151, 1173, 10.1001/archinte.1991.00400060097017

O’Keefe, 2000, Omega-3 fatty acids: time for clinical implementation?, Am. J. Cardiol., 85, 1239, 10.1016/S0002-9149(00)00735-9

Nettleton, 1995

G. Gudmundur, A. Halldorsson, O. Thorstad, Lipase-catalysed esterification of marine oil, US 7491522B2, 2003.

J. Kralovec, W. Wang, Immobilized enzymes and methods of using thereof, EP2439268B1, 2006.

J. Kralovec, W. Wang, J.C. Barrow, Enzymatic modification of oil, WO 2009/040676A2, 2009.

Brodelius, 1978, Industrial applications of immobilized biocatalysts, Vol. 10, 75

Panesar, 2010, Potential applications of immobilized β-Galactosidase in food processing industries, Enzyme Res., 10.4061/2010/473137

M.W. Griffiths, D.D. Muir, J.D. Phillips, Thermal stable beta-galactosidase, US4332895, 1979.

NIIR Board of Consultants & Engineers, 2005

Kosseva, 2013, Use of immobilized biocatalyst for valorization of whey lactose, 137

Flynne, 2008

H. Hirohara, H. Yamamoto, E. Kawano, S. Nabeshima, Immobilized lactase, its preparation and use, EP 0037667B1, 1981.

White, 1955, The chemistry of the N-Alkyl-N-nitrosoamides. II. A new method for the deamination of aliphatic amines, J. Am. Chem. Soc., 77, 6011, 10.1021/ja01627a064

K. Ditrich, F. Balkenhohl, W. Ladner, Separation of optically active amides, WO1997/10201A1, 1996.

ChiPros® Chiral Amines for Your Innovation - BASF Intermediates, (n.d.). http://www.intermediates.basf.com/chemicals/chiral-intermediates/amines (Accessed 2 January 2019).

Simon, 2010, Expanding the scope of industrial biocatalysis, Spec. Chem. Mag., 36

T. Ohrui, Y. Sakakibara, Y. Aono, M. Kato, H. Takao, T. Kawaguchi, Process for continuously synthesizing acrylic acid esters, US 3875212A, 1973.

B. Hauer, C.K. Branneby, S. Maurer, P. Trodler, M. Miiller, CALB muteins and their use, US 8206969B2, 2012.

van Rantwijk, 2000, Lipase-catalyzed synthesis of carboxylic amides: nitrogen nucleophiles as acyl acceptor, Monatshefte Fuer Chemie/Chemical Mon., 131, 549, 10.1007/s007060070086

de Zoete, 1996, Lipase-catalysed ammoniolysis of lipids. A facile synthesis of fatty acid amides, J. Mol. Catal. B Enzym., 2, 141, 10.1016/S1381-1177(96)00025-2

K.F. Brandstadt, T.H. Lane, R.A. Gross, Enzyme catalyzed organosilicon esters and amides, US 2004/0082024A1, 2004.

Jackson, 2011, Application of biocatalysis in the agrochemical industry, 255

Blaser, 1999, The chiral switch of metolachlor: the development of a large-scale enantioselective catalytic process, Chimia (Aarau), 53, 275, 10.2533/chimia.1999.275

Blaser, 2002, The chiral switch of (S)-metolachlor: a personal account of an industrial odyssey in asymmetric catalysis, Adv. Synth. Catal., 344, 17, 10.1002/1615-4169(200201)344:1<17::AID-ADSC17>3.0.CO;2-8

Blaser, 2007, From a chiral switch to a ligand portfolio for asymmetric catalysis, Acc. Chem. Res., 40, 1240, 10.1021/ar7001057

J.R. Shroff, V.R. Shroff, B. Shanker, Hydrogenation of imines, US8461386B2, 2013.

C. Nuebling, K. Ditrich, C. Dully, Optical resolution of primary amines by enantioselective acylation with a long-chain alkoxyalkanoate or phenoxyalkanoate ester in the presence of a lipase, DE19837745A1, 1998.

H. Riechers, J. Simon, A. Hoehn, A. Kramer, F. Funke, W. Siegel, C. Nuebling, Racemization of optically active amines useful as pharmaceuticals or intermediates, by contacting in gaseous form with hydrogen and catalyst, giving high racemization degree and yield, DE19852282A1, 1998.

K.S. Hayes, E.G. Lutz, M.G. Turcotte, Racemization of optically active alkoxyamines, US6060624A, 1999.

Ansorge-Schumacher, 2013, Immobilised lipases in the cosmetics industry, Chem. Soc. Rev., 42, 6475, 10.1039/c3cs35484a

Nieguth, 2011, Enabling industrial biocatalytic processes by application of silicone-coated enzyme preparations, Adv. Synth. Catal., 353, 2522, 10.1002/adsc.201100421

Clendennen, 2015, An Enzymatic Approach to Sustainable Manufacturing of Personal Care Ingredients: Reducing the Traditional Environmental Impact of a Consumer Product’s Life Cycle, Euro Cosmet., 9, 334

Garcia, 1996, Enzymatic synthesis of Myristyl Myristate. Estimation of parameters and optimization of the process, Biocatal. Biotransformation, 14, 67, 10.3109/10242429609106877

Hills, 2003, Industrial use of lipases to produce fatty acid esters, Eur. J. Lipid Sci. Technol., 105, 601, 10.1002/ejlt.200300853

E. US EPA, OCSPP, OPPT, Presidential Green Chemistry Challenge: 2009 Greener Synthetic Pathways Award, (n.d.). https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2009-greener-synthetic-pathways-award (Accessed 2 January 2019).

CHIBATA, 1982, Application of immobilized enzymes for asymmetric reactions, 195

Chibata, 1975, Applications of immobilized enzymes and immobilized microbial cells for L-amino acid production, 111

Goldsmith, 2012, Directed enzyme evolution: beyond the low-hanging fruit, Curr. Opin. Struct. Biol., 22, 406, 10.1016/j.sbi.2012.03.010

Palomo, 2012, 329

Truppo, 2017, Biocatalysis in the pharmaceutical industry: the need for speed, ACS Med. Chem. Lett., 8, 476, 10.1021/acsmedchemlett.7b00114

Truppo, 2011, Development of an improved immobilized CAL-B for the enzymatic resolution of a key intermediate to odanacatib, Org. Process Res. Dev., 15, 1033, 10.1021/op200157c

Gauthier, 2008, The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K, Bioorganic Med. Chem. Lett., 18, 923, 10.1016/j.bmcl.2007.12.047

Limanto, 2005, An efficient chemoenzymatic approach to (S)-γ-fluoroleucine ethyl ester, J. Org. Chem., 70, 2372, 10.1021/jo047918j

Basso, 2016, Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins, Tetrahedron, 72, 7323, 10.1016/j.tet.2016.02.021

Truppo, 2012, Development of an immobilized transaminase capable of operating in organic solvent, ChemCatChem, 4, 1071, 10.1002/cctc.201200228

Basso, 2018, How to optimise the immobilization of amino transaminases on synthetic enzyme carriers, to achieve up to a 13-fold increase in performances, Chem. Today, 36, 40

Boyer, 2000, Pathogenesis, diagnosis and management of hepatitis C, J. Hepatol., 32, 98, 10.1016/S0168-8278(00)80419-5

Neumann, 1998, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science, 282, 103, 10.1126/science.282.5386.103

Fukumoto, 1996, Viral dynamics of hepatitis C early after orthotopic liver transplantation: evidence for rapid turnover of serum virions, Hepatology, 24, 1351, 10.1002/hep.510240606

Domingo, 1985, The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance-a review, Gene, 40, 1, 10.1016/0378-1119(85)90017-4

Martell, 1992, Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution, J. Virol., 66, 3225, 10.1128/JVI.66.5.3225-3229.1992

A. Cagulada, J. Chan, L. Chan, D.A. Colby, Synthesis of an antiviral compound, US 2015/0175626A1, 2015.

Bjornson, 2016, Inhibitors of Hepatitis C Virus, US 2016/ 9296782 B2

C.Y. Yang, Hepatitis C treatments with Sofosbuvir, WO 2014/185995 Al, 2014.

N. Martin, O. Schone, H.-P. Spitzenstatter, D. Benito-Garagorri, A process for preparing a crystalline form of sofosbuvir, WO 2016/156512 A, 2016.

M. Gaboardi, G. Pallanza, G. Castaldi, M. Castaldi, Process for the preparation of Sofosbuvir, US 2017 / 0247404 A1, 2017.

Muñiz, 2007, Penicillin and cephalosporin production: a historical perspective, Rev. Latinoam. Microbiol., 49, 88

Fleming, 1929, On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzæ, Br. J. Exp. Pathol., 10, 226

Florey, 1949

Wegman, 2001, Towards biocatalytic synthesis of β-lactam antibiotics, Adv. Synth. Catal., 343, 559, 10.1002/1615-4169(200108)343:6/7<559::AID-ADSC559>3.0.CO;2-Z

M.M. Harold, J. Van Theodorus, M.D. Godfried, Process for the synthesis of cefaclor, WO 2006/069984 A2, 2005.

European Centre For Disease Prevention And Control, 2017

Batchelor, 1959, Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations, Nature, 183, 257, 10.1038/183257b0

Rolinson, 1960, Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis, Nature, 187, 236, 10.1038/187236a0

Claridge, 1960, Bacterial penicillin amidase, Nature, 187, 237, 10.1038/187237a0

Huang, 1960, Enzymatic hydrolysis of the side chain of penicillins, J. Am. Chem. Soc., 82, 3790, 10.1021/ja01499a083

Kallenberg, 2005, Immobilization of Penicillin G acylase: the key to optimum performance, Adv. Synth. Catal., 347, 905, 10.1002/adsc.200505042

Vandamme, 1984

Vandamme, 1983, Peptide antibiotic production through immobilized biocatalyst technology, Enzyme Microb. Technol., 5, 403, 10.1016/0141-0229(83)90021-2

Shewale, 1997, Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid, Enzyme Microb. Technol., 20, 402, 10.1016/S0141-0229(96)00176-7

Parmar, 2000, Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA), Biotechnol. Adv., 18, 289, 10.1016/S0734-9750(00)00039-2

Bruggink, 1998, Penicillin acylase in the industrial production of β-Lactam antibiotics, Org. Process Res. Dev., 2, 128, 10.1021/op9700643

Kasche, 1986, Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products, Enzyme Microb. Technol., 8, 4, 10.1016/0141-0229(86)90003-7

Truppo, 2012, Immobilized transaminases and processes for making and using immobilized transaminase, WO2012/177527A1

Hansen, 2009, Highly efficient asymmetric synthesis of Sitagliptin, J. Am. Chem. Soc., 131, 8798, 10.1021/ja902462q

Kidd, 2007, Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids, Altern. Med. Rev., 12, 207

Peretti, 2005, Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency, Nutr. Metab., 2, 11, 10.1186/1743-7075-2-11

C. Fibrosis Foundation, 2015

R. Gallotto, G.L. Loring, K. Gary, E.S. PARK, D.J. Brown, W.R.K. Schoevaart, M.C.A. Van Vliet, Enteral feeding device and related methods of use, US 20170105903, 2017.

A.L. Margolin, Methods, compositions, and devices for supplying dietary fatty acid needs, WO 2013123139A8, 2013.

Center for Food Safety and Applied Nutrition, 2012, 2

Relizorb (Immobilized lipase cartridge) - Formulas, (n.d.). https://www.relizorb.com/docs/pdfs/Compatible-Formulas-and-Pumps.pdf (Accessed 28 January 2019).

Freedman, 2017, Increased fat absorption from enteral formula through an in-line digestive cartridge in patients with cystic fibrosis, J. Pediatr. Gastroenterol. Nutr., 65, 97, 10.1097/MPG.0000000000001617

CHEN, 1999, Preparation and characterisation of urease immobilized onto porous chitosan beads for urea hydrolysis, Bioprocess Eng., 21, 323, 10.1007/s004490050683

Bayramoğlu, 2003, Preparation and application of spacer-arm-attached poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) films for urease immobilisation, React. Funct. Polym., 56, 111, 10.1016/S1381-5148(03)00050-6

Lin, 2003, Urea permeation and hydrolysis through hollow fiber dialyzer immobilized with urease: storage and operation properties, Biomaterials, 24, 1989, 10.1016/S0142-9612(02)00611-7

Saxena, 2017, Biopolymer matrix for nano-encapsulation of urease – a model protein and its application in urea detection, J. Colloid Interface Sci., 490, 452, 10.1016/j.jcis.2016.11.030

Agar, 2010, Review: Understanding sorbent dialysis systems, Nephrology, 15, 406, 10.1111/j.1440-1797.2010.01321.x

P.D. Updyke, H.F. Sandford, B.J.B.. Lipps, D.M.D.M. Zatezalo, M.J. Beiriger, M.J. Mullner, Dialysis systems and methods, EP 2219704B1, 2009.

C. Curtin, B. Lipps, N. Ofsthun, H.F. Sandford, A. Stennett, U. Palmer David, Wearable kidney, WO 2007/103411A2, 2007.

Sherman, 1983, Ion Exchange separations with molecular sieves zeolite, Vol. 80, 583

J.D. Sherman, D.S. Bem, G.J. Lewis, Process for removing toxins from blood using zirconium metallate or titanium metallate compositions, US6099737A, 1999.

Ash, 2002, Extracorporeal blood detoxification by sorbents in treatment of hepatic encephalopathy, Adv. Ren. Replace. Ther., 9, 3, 10.1053/jarr.2002.30474

S. Karoor, B. Donovan, T.T. Hai, M. Katada, L. Lu, L. Martis, S. Morti, S. Mujais, P.J. Sanders, P.J. Soltys, R. Tandon, Method and composition for removing uremic toxins in dialysis processes, US7241272B2, 2007.

T.C. Vogler, W.J. Asher, Liquid membrane capsule systems resistant to coalescence by means of an irreversible coating, US4244816A, 1981.

Roberts, 1998, The regenerative dialysis (REDY) sorbent system, Nephrology, 4, 275, 10.1111/j.1440-1797.1998.tb00359.x

Haroon, 2018, Haemodialysis at home: review of current dialysis machines, Expert Rev. Med. Devices, 15, 337, 10.1080/17434440.2018.1465817

http://awak.com/technology/ (Accessed 27 December 2018), (n.d.).

C. Bluchel, P. Haywood, Sorbent for a dialysis device and dialysis system, WO2018/106185A2, 2018.

Hosu, 2019, Minireview: smart tattoo, microneedle, point-of-care, and phone-based biosensors for medical screening, diagnosis, and monitoring, Anal. Lett., 52, 78, 10.1080/00032719.2017.1391826

Habimana, 2018, Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics, Anal. Lett., 51, 2933, 10.1080/00032719.2018.1458104

Serban, 2004, Rapid and sensitive automated method for glucose monitoring in wine processing, J. Agric. Food Chem., 52, 5588, 10.1021/jf0494229

Gazel, 2016, Enzyme-based biosensors in food industry via surface modifications, 227

Verma, 2017, Nanobiotechnology advances in enzymatic biosensors for the agri-food industry, Environ. Chem. Lett., 15, 555, 10.1007/s10311-017-0640-4

Hart, 2006, Selective and rapid biosensor integrated into a commercial hand‐held instrument for the measurement of ammonium ion in sewage effluent, Anal. Lett., 39, 1657, 10.1080/00032710600713545

Global Test Strip Market Research Report- 2021 | MRFR, (n.d.). https://www.marketresearchfuture.com/reports/test-strip-market-672 (Accessed 28 January 2019).

Rajangam, 2018, Progress in enzyme inhibition based detection of pesticides, Eng. Life Sci., 18, 4, 10.1002/elsc.201700028

Arduini, 2016, Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis, Microchim. Acta, 183, 2063, 10.1007/s00604-016-1858-8

Pohanka, 2013, Cholinesterases in Biorecognition and biosensors construction: a review, Anal. Lett., 46, 1849, 10.1080/00032719.2013.780240

Martinkova, 2017, Main streams in the construction of biosensors and their applications, Int. J. Electrochem. Sci., 12, 7386, 10.20964/2017.08.02

Thum, 2008, Sustainability that gets under the skin, Https://Personal-Care.evonik.com/Product/Personal-Care/Downloads/Public/elements25-Evonik-Newsletter-Sustainability.pdf

Sheldon, 2019, Broadening the scope of biocatalysis in sustainable organic synthesis, ChemSusChem, 12, 2859, 10.1002/cssc.201900351