Induktive Definitionen und Dilatoren

Wilfried Buchholz1
1Mathematisches Institut der Universität München, Theresienstrasse 39, D-8000, München 2, Bundesrepublik Deutschland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Girard, J.Y.: A survey ofΠ 2 1 -logic. In: Barwise, J., Kaplan, D., Keisler, H.J., Suppes, P., Troelstra, A.S. (eds.), Logic, methodology and philosophy of science. VI. pp. 89–107. Amsterdam: North-Holland 1982

Girard, J.Y.:Π 2 1 -logic, Part 1: Dilators. Ann. Math. Logic21, 75–219 (1981)

Girard, J.Y.: Introduction toΠ 2 1 -logic. Synthese62, 191–216 (1985)

Girard, J.Y., Normann, D.: Set recursion andΠ 2 1 -logic. Ann. Pure Appl. Logic28, 255–286 (1985)

Jäger, G.: Countable admissible ordinals and dilators. Z. Math. Logik Grundlagen Math.32, 451–456 (1986)

Jervell, H.: Introducing homogeneous trees. In: Proc. Herbrand Symposion, Logic Colloquium 1981, pp. 147–158. Amsterdam: North-Holland 1982

Ressayre, J.P.: Bounding generalized recursive functions of ordinals by effective functors; a complement to the Girard theorem. In: Proc. Herbrand Symposion, Logic Colloquium 1981, pp. 251–279. Amsterdam: North-Holland 1982

Van de Wiele, J.: Recursive dilators and generalized recursions. In: Proc. Herbrand Symposion, Logic Colloquium 1981, pp. 325–332. Amsterdam: North-Holland 1982

Päppinghaus, P.: Ptykes in GödelsT und Verallgemeinerte Rekursion über Mengen und Ordinalzahlen. Habilitationsschrift, Hannover 1985

Schütte, K.: Proof theory. Berlin Heidelberg New York: Springer 1977