Inductive algebras for the affine group of a finite field
Tóm tắt
Each irreducible representation of the affine group of a finite field has a unique maximal inductive algebra, and it is self-adjoint.
Tài liệu tham khảo
George, W.: Mackey. The Theory of Unitary Group Representations. The University of Chicago Press, Chicago, London (1976)
Humphreys, James E.: Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, Graduate Texts in Mathematics, Vol. 9. (1972)
Korányi, A.: Homogeneous bilateral block shifts. Proc. Indian Acad. Sci. Math. Sci. 124(2), 225–233 (2014)
Prasad, A., Vemuri, M.K.: Inductive algebras and homogeneous shifts. Complex Anal. Oper. Theory 4(4), 1015–1027 (2010)
Prasad, A., Vemuri, M.K.: Inductive algebras for finite Heisenberg groups. Comm. Algebra 38(2), 509–514 (2010)
Raghavan, K.N.: Finite dimensional inductive algebras are trivial. Comm. Algebra 33(10), 3783–3785 (2005)
Stegel, G.: Inductive algebras for trees. Pacific J. Math. 216(1), 177–200 (2004)
Stegel, G.: Even automorphisms of trees and inductive algebras. Int. J. Pure Appl. Math. 29(4), 521–552 (2006)
Steger, T., Vemuri, M.K.: Inductive algebras for \({\rm SL}(2,R)\). Illinois J. Math. 49(1), 139–151 (2005)
Vemuri, M.K.: Realizations of the canonical representation. Proc. Indian Acad. Sci. Math. Sci. 118(1), 115–131 (2008)