Kích thích khả năng chịu lạnh trong lúa mì trong quá trình nảy mầm bằng cách ngâm hạt trong nitric oxide và gibberellin

Plant Growth Regulation - Tập 71 - Trang 31-40 - 2013
Xiangnan Li1,2,3, Haidong Jiang1,2, Fulai Liu3, Jian Cai1,2, Tingbo Dai1,2, Weixing Cao1,2, Dong Jiang1,2
1National Engineering and Technology Center for Information Agriculture, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
2Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
3Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark

Tóm tắt

Sự lạnh có thể làm ảnh hưởng đến quá trình nảy mầm và sự phát triển của cây con, gây trở ngại lớn cho việc hình thành năng suất hạt ngũ cốc trong vụ mùa đông trồng muộn. Hạt lúa mì đông (Triticum aestivum L.) đã được ngâm riêng biệt với natri nitroprusside (SNP, như một chất cho nitric oxide) và axit gibberellic (GA3) trước khi nảy mầm, sau đó nảy mầm dưới nhiệt độ thấp. Việc tiền xử lý bằng SNP và GA3 làm tăng tỷ lệ nảy mầm, chỉ số nảy mầm, trọng lượng và chiều dài của cotyledon và rễ, trong khi giảm thời gian nảy mầm trung bình và trọng lượng của hạt nảy mầm trong điều kiện nhiệt độ thấp. NO ngoại sinh và GA3 làm tăng tỷ lệ hô hấp của hạt và thúc đẩy quá trình phân giải tinh bột kèm theo việc tăng hoạt động của amylase. Bên cạnh đó, các hệ thống chống oxy hóa hiệu quả đã được kích hoạt bởi NO, và qua đó giảm thiểu nồng độ malondialdehyde và hydrogen peroxide (H2O2). Sự phát triển của cây con cũng được thúc đẩy bởi NO ngoại sinh và GA3 nhờ vào quá trình nảy mầm hạt được cải thiện và duy trì môi trường cân bằng của các loài oxy phản ứng trong điều kiện cây con phát triển dưới nhiệt độ lạnh. Điều này cho thấy NO ngoại sinh có hiệu quả hơn GA3 trong việc giảm căng thẳng do lạnh trong quá trình nảy mầm và thiết lập cây con ở lúa mì.

Từ khóa

#lúa mì #chịu lạnh #nảy mầm #nitric oxide #gibberellin #hạt giống #phát triển cây con

Tài liệu tham khảo

Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in β vulgaris. Plant Physiol 24:1–15 Beligni M, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221 Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129:1642–1650 Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254 Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246 Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451 Cui JX, Zhou YH, Ding JG, Xia XJ, Shi K, Chen SC, Asami T, Chen ZX, Yu JQ (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34:347–358 Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459 Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid peroxidation in sugar rich plant tissue extracts. J Agr Food Chem 40:1566–1570 Ellis RH, Roberts EH (1980) Towards a rational basis for testing seed quality. Seed Production, Butterworths Esim N, Atici O, Mutlu S (2012) Effects of exogenous nitric oxide in wheat seedlings under chilling stress. Toxicol Ind Health. doi: 10.1177/0748233712457444 Fales FW (1951) The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem 193:113–124 Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930 Guo Z, Ou W, Lu S, Zhong Q (2006) Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol Biochem 44:828–836 Itoh H, Ueguchi TM, Matsuoka M (2008) Molecular biology of gibberellins signaling in higher plants. Elsevier, Waltham Keeley JE, Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276:1248–1250 Kishorekumar A, Abdul JC, Manivannan P (2007) Comparative effects of different triazole compounds on growth, photosynthetic pigments and carbohydrate metabolism of Solenostemon rotundifolius. Colloids Surf B Biointerfaces 60:207–212 Lamattina L, Beligni MV, Garcia-Mata C (2001) Method of enhancing the metabolic function and the growing conditions of plants and seeds. US Patent. Patent No. US 6242384B1 Lenton J, Appleford N (1991) Gibberellin production and action during germination of wheat. Springer-Verlag, New York Li QY, Niu HB, Yin J, Wang MB, Shao HB, Deng DZ, Chen XX, Ren JP, Li YC (2008) Protective role of exogenous nitric oxide against oxidative-stress induced by salt stress in barley (Hordeum vulgare). Colloids Surf B Biointerfaces 65:220–225 Li QZ, Li CH, Yu XC, Shi QH (2011) Gibberellin A3 pre-treatment increased antioxidative capacity of cucumber radicles and hypocotyls under suboptimal temperature. Afr J Agric Res 6:4091–4098 Lovegrove A, Hooley R (2000) Gibberellin and abscisic acid signalling in aleurone. Trends Plant Sci 5:102–110 Mata CG, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204 Moloi MJ, Westhuizen AJ (2006) The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J Plant Physiol 163:1118–1125 Pimenta Lange MJ, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8:281–290 Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Elsevier, Waltham Siddiqui KS, Cavicchioli R (2006) Cold-adapted enzymes. Annu Rev Biochem 75:403–433 Skadsen R (1998) Physiological and molecular genetic mechanisms regulating hydrolytic enzyme gene expression in cereal grains. Physiol Plant 104:486–502 Skinner DZ, Mackey B (2009) Freezing tolerance of winter wheat plants frozen in saturated soil. Field Crops Res 113:335–341 Song LL, Ding W, Zhao MG, Sun BT, Zhang LX (2006) Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci 171:449–458 Srivastava LM (2002) Gibberellins, plant growth and development. Academic Press, San Diego Sun TP (2000) Gibberellin signal transduction. Curr Opin Plant Biol 3:374–380 Tan W, Liu J, Dai T, Jing Q, Cao W, Jiang D (2008) Alterations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging. Photosynthetica 46:21–27 Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos L. New Phytol 174:322–331 Tuna AL, Kaya C, Dikilitas M, Higgs D (2008) The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot 62:1–9 Wang YR, Yu L, Nan ZB, Liu YL (2004) Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Sci 44:535–541 Xie Z, Jiang D, Cao W, Dai T, Jing Q (2003) Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statuses. Plant Growth Regul 41:117–127 Zhang H, Shen WB, Xu LL (2003) Effects of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Bot Sin 45:901–905 Zhang H, Shen WB, Zhang W, Xu LL (2005) A rapid response of β-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination. Planta 220:708–716 Zhang Y, Liu Z, Wang L, Zheng S, Xie J, Bi Y (2010) Sucrose-induced hypocotyl elongation of Arabidopsis seedlings in darkness depends on the presence of gibberellins. J Plant Physiol 167:1130–1136 Zhao MG, Tian QY, Zhang WH (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol 144:206–217 Zhao M, Chen L, Zhang L, Zhang W (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767 Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W (2009) Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot 67:222–227