Indoor Aerosol Modeling: Basic Principles and Practical Applications

Tareq Hussein1, Markku Kulmala2
1Department of Physical Sciences, University of Helsinki, P.O. Box 64, 00014, Helsinki, Finland
2Department of Physical Sciences, University of Helsinki, Helsinki, Finland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadie, M., Limam, K., & Allard, F. (2001). Indoor particle pollution: Effect of wall textures on particle Deposition. Building and Environment, 36, 821–827.

Abt, E., Suh, H. H., Catalano, P., & Koutrakis, P. (2000). Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 34, 3579–3587.

Afshari, A., Matson, U., & Ekberg, L. E. (2005). Characterization of indoor sources of fine and ultrafine particles: A study conducted in a full-scale chamber. Indoor Air, 15, 141–150.

Alzona, J., Cohen, B. L., Rudolph, H., Jow, H. N., & Frohliger, J. O. (1979). Indoor–outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 13, 55–60.

Asmi, A. J., Pirjola, L. H., & Kulmala, M. A. (2004). Sectional aerosol model for submicron particles in indoor air. Scandinavian Journal of Work, Environment & Health, 30(Suppl 2), 63–72.

Borchiellini, R., & Fürbringer, J.-M. (1999). An evaluation exercise of a multizone air flow model. Energy and Buildings, 30, 35–51.

Corner, B. J., & Pendlebury, E. D. (1951). The coagulation and deposition of a stirred aerosol. Proceedings of the Physical Society, B64, 645–654.

Dascalaki, E., Santamouris, M., Argiriou, A., Helmis, C., Asimakopoulos, D. N., Papadopoulos, K. et al. (1996). On the combination of air velocity and flow measurements in single sided natural ventilation configurations. Energy and Buildings, 24, 155–165.

Fan, Y. (1995). CFD modelling of the air and contaminant distribution in rooms. Energy and Buildings, 23, 33–39.

Fan, C. W., & Zhang, J. J. (2001). Characterization of emissions from portable household combustion devices: Particle size distributions, emission rates and factors, and potential exposures. Atmospheric Environment, 35, 1281–1290.

Ferro, A. R., Kopperud, R. J., & Hildemann, L. M. (2004) Source strengths for indoor human activities that resuspend particulate matter. Environmental Science and Technology, 38, 1759–1764.

Feustel, H. E. (1999). COMIS – an international multizone air-flow and contaminant transport model. Energy and Buildings, 30, 3–18.

Fogh, C. L., Byrne, M. A., Roed, J., & Goddard, A. J. H. (1997). Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 31, 2193–2203.

Friess, H., & Yadigaroglu, G. (2002). Modeling of the resuspension of particle clusters from multilayer aerosol deposits with variable porosity. Journal of Aerosol Science, 33, 883–906.

Gan, G. (1995). Evaluation of room air distributions systems using computational fluid dynamics. Energy and Buildings, 23, 83–93.

Goodfellow, H., & Tähti, E. (2001). Industrial ventilation: Design guidebook. In Gustavsson, J. (Ed.), Cabin air filters: Performance and requirements. Academic Press, California, p. 685 (SAE Conference, Detroit, February 1996.)

Haas, A., Weber, A., Dorer, V., Keilholz, W., & Pelletret, R. (2002). COMIS v3.1 simulation environment for multizone air flow and pollutant transport modelling. Energy and Buildings, 34, 873–882.

Hanley, J. T., Ensor, D. S., Smith, D. D., & Sparks, L. E. (1994). Fractional aerosol filtration efficiency of in duct ventilation air cleaners. Indoor Air, 4, 169–178.

He, C., Morawska, L., Hitchins, J., & Gilbert, D. (2004). Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric Environment, 38, 3405–3415.

Hinds, W. C. (1999). Aerosol technology (2nd ed.). New York: Wiley.

Howard-Reed, C., Wallace, L. A., & Emmerich, S. J. (2003). Effect of ventilation system and air filters on decay rates of particles produced by indoor sources in an occupied townhouse. Atmospheric Environment, 37, 5295–5306.

Hussein, T., Glytsos, T., Ondráček, J., Ždímal, V., Hämeri, K., Lazaridis, M., et al. (2006). Particle size characterization and emission rates during indoor activities in a house. Atmospheric Environment, 40, 4285–4307.

Hussein, T., Hämeri, K., Heikkinen, M. S. A., & Kulmala, M. (2005a). Indoor and outdoor particle size characterization at a family house in Espoo – Finland. Atmospheric Environment, 39, 3697–3709.

Hussein, T., Korhonen, H., Herrmann, E., Hämeri, K., Lehtinen, K., & Kulmala, M. (2005b). Emission rates due to indoor activities: Indoor aerosol model development, evaluation, and applications. Aerosol Science and Technology, 39(11), 1111–1127.

Jamriska, M., Morawska, L., & Ensor, D. S. (2003). Control strategies for sub-micrometer particles indoors: Model study of air filtration and ventilation. Indoor Air, 13, 96–105.

Jones, A. P. (1999). Indoor air quality and health. Atmospheric Environment, 33, 4535–4564.

Ju, C., & Spengler, J. D. (1981) Room to room variations in concentration of respirable particles in residences. Environmental Science and Technology, 15, 592–596.

Kildeso, J., Vinzents, P., Schneider, T., & Kloch, N. P. (1999) A simple method for measuring the potential resuspension of dust from carpets in the indoor environment. Textile Research Journal, 69, 169–175.

Korhonen, H., Lehtinen, K. E. J., & Kulmala, M. (2004). Aerosol dynamic model UHMA: Model development and validation. Atmospheric Chemistry and Physics, 4, 757–771.

Kulmala, M., Asmi, A., & Pirjola, L. (1999). Indoor air aerosol model: The effect of outdoor air, filtration and ventilation on indoor concentrations. Atmospheric Environment, 33, 2133–2144.

Kulmala, M., Lehtinen, K. E. J., & Laaksonen, A. (2006). Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration. Atmospheric Chemistry and Physics, 6, 787–793.

Lai, A. C. K., & Nazaroff, W. W. (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 31, 463–476.

Lai, A. C. K., Byrne, M. A., & Goddard, A. J. H. (2002). Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Science and Technology, 36, 973–982.

Lazardis, M., & Drossinos, Y. (1998). Multilayer resuspension of small identical particles by turbulent flow. Journal of Aerosol Science and Technology, 28(6), 548–560.

Lee, S.-C., Guo, H., Li, W.-M., & Chan, L.-Y. (2002). Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong. Atmospheric Environment, 36, 1929–1940.

Li, Y., & Delsante, A. (2001). Natural ventilation induced by combined wind and thermal forces. Building and Environment, 36, 59–71.

Liu, D.-L., & Nazaroff, W. W. (2001). Modeling pollutant penetration across building envelopes. Atmospheric Environment, 35, 4451–4462.

Long, C. H., Suh, H. H., & Koutrakis, P. (2000). Characterization of indoor particle sources using continuous mass and size monitors. Journal of Air and Waste Management Association, 50, 1236–1250.

Lum, R. M., & Graedel, T. E. (1973) Measurements and models of indoor aerosol size spectra. Atmospheric Environment, 7, 827–842.

Meklin, T., Reponen, T., Toivola, M., Koponen, V., Husman, T., Hyvärinen, A., et al. (2002). Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment, 36, 6031–6039.

Miller, S. L., & Nazaroff, W. W. (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmospheric Environment, 35, 2053–2067.

Morawska, L., He, C., Hitchins, J., Gilbert, D., & Parappukkaran, S. (2001). The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 35, 3463–3473.

Mosley, R. B., Greenwell, D. J., Sparks, L. E., Guom Z., Tucker, W. G., Fortmann, R. et al. (2001). Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 34, 127–136.

Nazaroff, W. W. (2004). Indoor particle dynamics. Indoor Air, 14(Suppl 7), 175–183.

Nazaroff, W. W., & Cass, G. R. (1986). Mathematical modeling of chemically reactive pollutants in indoor air. Environmental Science and Technology, 20, 924–934.

Nazaroff, W. W., & Cass, G. R. (1989). Mathematical modeling of indoor aerosol dynamics. Environmental Science and Technology, 23, 157–166.

Otten, J. A., & Burge, H. A. (1999). Bacteria. In: Macher, J. (Ed.), Bioaerosols, assessment and control. American Conference of Governmental Industrial Hygienists, Cincinnati, pp. 183–1810.

Pirjola, L. (1999). Effects of the increased UV radiation and biogenic VOC emissions on ultrafine sulphate aerosol formation. Journal of Aerosol Science, 29, 355–367.

Platts-Mills, T. A. E., Ward, G. W., Sporik, R., Gelber, L. E., Champman, M. D., & Heymann, P. W. (1991). Epidemiology of the relationship between exposure to indoor allergins and asthema. International Archives of Allergy and Applied Immunology, 87(2), 505–510.

Porstendörfer, J., & Reineking, A. (1992) Indoor behavior and characteristics of radon progeny. Radiation Protection Dosimetery, 45, 303–311.

Posner, J. D., Buchanan, C. R., & Dunn-Rankin, D. (2003). Measurement and prediction of indoor air flow in a model room. Energy and Buildings, 35, 515–526.

Raunemaa, T., Kulmala, M., Saari, H., Olin, M., & Kulmala, M. H. (1989). Indoor air aerosol model: Transport indoors and deposition of fine and coarse particles. Aerosol Science and Technology, 11, 11–25.

Ren, Z., & Stewart, J. (2003). Simulating air flow and temperature distribution inside buildings using a modified version of COMIS with sub-zonal divisions. Energy and Buildings, 35, 257–271.

Riley, W. J., Mckone, T. E., Lai, A. C. K., & Nazaroff, W. W. (2002). Indoor particulate matter of outdoor origin: Importance of size-dependent removal mechanisms. Environmental Science and Technology, 36, 200–207.

Roulet, C.-A., Fürbringer, J.-M., & Creton, P. (1999). The influence of the user on the results of multizone air flow simulations with COMIS. Energy and Buildings, 30, 73–86.

Schneider, T., Kildeso, J., & Breum, N. O. (1999). A two-compartment model for determining the contribution of sources, surface deposition and resuspension to air and surface dust concentration levels in occupied rooms. Building and Environment, 34, 583–595.

Thatcher, T. L., & Layton, D. W. (1995). Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 29, 1487–1497.

Thatcher, T. L., Lai, A. C. K., Moreno-Jackson, R., Sextro, R. G., & Nazaroff, W. W. (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmospheric Environment, 36, 1811–1819.

Theerachaisupakij, W., Matsusaka, S., Akashi, Y., & Masuda, H. (2003). Reentrainment of deposited particles by drag and aerosol collision. Journal of Aerosol Science, 34, 261–274.

Thornburg, J., Ensor, D. S., Rodos, C. E., Lawless, P. A., Sparks, L. E., & Mosley, R. B. (2001). Penetration of particles into buildings and associated physical factors – Part I: Model development and computer simulations. Journal of Aerosol Science and Technology, 34, 284–296.

Tung, T. C. W., Chao, C. Y. H., & Burnett, J. (1999). A methodology to investigate the particulate penetration coefficient through building shell. Atmospheric Environment, 33, 881–893.

Vartiainen, E., Kulmala, M., Ruuskanen, T. M., Taipale, R., Rinne, J., & Vehkamäki, H. (2006). Formation and growth of indoor air aerosol particles as a result of d-limonene oxidation. Atmospheric Environment, 40, 7882–7892.

Walton, G. N. (1997). CONTAM96 User manual. Report NSITIR 6056. US Department of Commerce, National Institute of Standards and Technology, Gaithersburg (September).

Wanner, H. U. (1993). Sources of pollutants in indoor air. IARC Scientific Publications, 109, 19–30.

Ziskind, G., Dubovsky, V., & Letan, R. (2002). Ventilation by natural convection of a one-story building. Energy and Buildings, 34, 91–102.