Indole-3-acetic acid in microbial and microorganism-plant signaling
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aloni, 1995, The 3-dimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis L, Planta, 196, 597, 10.1007/BF00203661
Bar, 1992, Induction of indole-3-acetic acid synthesis and possible toxicity of tryptophan in Azospirillum brasilense Sp7, Symbiosis, 13, 191
Bartling, 1992, Cloning and expression of an Arabidopsis nitrilase which can convert indole-3-acetonitrile to the plant hormone, indole-3-acetic acid, Eur J Biochem, 205, 417, 10.1111/j.1432-1033.1992.tb16795.x
Bianco, 2006, Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli, Microbiol-Sgm, 152, 2421, 10.1099/mic.0.28765-0
Brandl, 1996, Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola, Appl Environ Microbiol, 62, 4121, 10.1128/AEM.62.11.4121-4128.1996
Burdman, 1996, Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd, Appl Environ Microbiol, 62, 3030, 10.1128/AEM.62.8.3030-3033.1996
Camerini S Senatore B Imperlini E Bianco C Miraglia E Lonardo E Defez R (2004) Improve legume yield by phytohormone release from soil bacteria. Legumes for the Benefit of Agriculture, Nutrition and the Environment ( European Association for Grain Legume Research , eds), pp. 127–128. AEP, Dijon.
Costacurta, 1994, Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene, Mol Gen Genet, 243, 463, 10.1007/BF00280477
Dobbelaere, 1999, Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat, Plant Soil, 212, 155, 10.1023/A:1004658000815
Dullaart, 1970, Presence of gibberellin-like substances and their possible role in auxin bioproduction in root nodules and roots of Lupinus luteus L, Acta Bot Neerl, 19, 290, 10.1111/j.1438-8677.1970.tb00191.x
Egebo, 1991, Oxygen dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum, J Bacteriol, 173, 4897, 10.1128/jb.173.15.4897-4901.1991
Fallik E Sarig S Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum . Azospirillum–Plant Associations ( Okon Y , ed), pp. 77–85. CRC Press, Boca Raton.
Glass, 1986, Cloning of the gene for indoleacetic acid-lysine synthetase from Pseudomonas syringae subsp savastanoi, J Bacteriol, 166, 598, 10.1128/jb.166.2.598-603.1986
Gysegom P (2005) Study of the transcriptional regulation of a key gene in indole-3-acetic acid biosynthesis in Azospirillum brasilense. PhD thesis, K.U. Leuven.
Hartmann A Zimmer W (1994) Physiology of Azospirillum . Azospirillum/Plant Associations ( Okon Y , ed), pp. 15–39. CRC Press, Boca Raton.
He, 2004, Type III protein secretion mechanism in mammalian and plant pathogens, BBA-Mol Cell Res, 1694, 181
Hutcheson, 1985, Regulation of 3-indoleacetic acid production in Pseudomonas syringae pv savastanoi– purification and properties of tryptophan 2-monooxygenase, J Biol Chem, 260, 6281, 10.1016/S0021-9258(18)88968-2
Jensen, 1995, Catabolism of indole-3-acetic-acid and 4-chloroindole-3-acetic and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum, J Bacteriol, 177, 5762, 10.1128/jb.177.20.5762-5766.1995
Kaper, 1958, On the metabolism of tryptophan by Agrobacterium tumefaciens, Biochim Biophys Acta, 30, 401, 10.1016/0006-3002(58)90065-9
Klement Z (1982) Hypersensitivity. Phytopathogenic Prokaryotes ( Mount MS & Lacy GH , eds), pp. 149–177. Academic Press, New York.
Kravchenko, 1991, Possibility of auxin synthesis by association-forming nitrogen-fixing bacteria in the rhizosphere of wheat, Microbiology, 60, 647
Kucey, 1988, Plant growth altering effects of Azospirillum brasilense and Bacillus C-11-25 on 2 wheat cultivars, J Appl Bacteriol, 64, 187, 10.1111/j.1365-2672.1988.tb03375.x
Leveau, 1998, The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4), J Bacteriol, 180, 2237, 10.1128/JB.180.8.2237-2243.1998
Manulis S Barash I (2003) The molecular basis for transformation of an epiphyte into a gall-forming pathogen as exemplified by Erwinia herbicola pv. gypsophilae . Plant–Microbe Interactions ( Stacey G & Keen N , eds), pp. 19–52. American Phytopathological Society, St. Paul.
Mazzola, 1994, A mutation in the indole-3-acetic-acid biosynthesis pathway of Pseudomonas syringae pv syringae affects growth in Phaseolus vulgaris and syringomycin production, J Bacteriol, 176, 1374, 10.1128/jb.176.5.1374-1382.1994
Mino, 1970, Studies on the destruction of indole-3-acetic acid by a species of Arthrobacter IV. Decomposition products, Plant Cell Physiol, 11, 129, 10.1093/oxfordjournals.pcp.a074484
Mohammed, 2003, Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro, Amino Acids, 24, 73, 10.1007/s00726-002-0330-8
Mohnen, 1985, Hormonal regulation of beta-1,3-glucanase messenger RNA levels in cultured tobacco tissues, EMBO J, 4, 1631, 10.1002/j.1460-2075.1985.tb03830.x
Morris RO (1995) Genes specifying auxin and cytokinin biosynthesis in prokaryotes. Plant Hormones ( Davies PJ , eds), pp. 318–339. Kluwer Academic Publishers, Dordrecht.
Nagasawa, 1990, A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3 – purification and characterization, Eur J Biochem, 194, 765, 10.1111/j.1432-1033.1990.tb19467.x
Ona, 2003, The effect of pH on indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7, Symbiosis, 35, 199
Proctor, 1958, Bacterial dissimilation of indoleacetic acid: a new route of breakdown of the indole nucleus, Nature, 181, 1345, 10.1038/1811345a0
Ramesh, 1994, The interactions of Escherichia coli Trp repressor with tryptophan and with an operator oligonucleotide NMR studies using selectively N-15-labeled protein, Eur J Biochem, 225, 601, 10.1111/j.1432-1033.1994.00601.x
Robinette, 1990, Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv phaseolicola, J Bacteriol, 172, 5742, 10.1128/jb.172.10.5742-5749.1990
Sekine, 1989, Molecular cloning of a gene for indole-3-acetamide hydrolase from Bradyrhizobium japonicum, J Bacteriol, 171, 1718, 10.1128/jb.171.3.1718-1724.1989
Taiz L Zeiger E (1998) Plant Physiology. Sinauer Associates, Sunderland, MA.
Theunis M (2005) IAA biosynthesis in rhizobia and its potential role in symbiosis. PhD thesis, Universiteit Antwerpen.
Valls, 2006, Integrated regulation of the type III secretion system and other virulence determinants in Ralstonia solanacearum, PLoS Pathog, 2, 798, 10.1371/journal.ppat.0020082
Vande Broek, 1999, Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense, J Bacteriol, 181, 1338, 10.1128/JB.181.4.1338-1342.1999
Went FW Thimann KV (1937) Phytohormones. Macmillan, New York.
Wu, 1996, The auxin transport inhibitor N-(1-naphthyl)phthalamic acid elicits pseudonodules on nonnodulating mutants of white sweetclover, Plant Physiol, 110, 501, 10.1104/pp.110.2.501
Xu, 1988, Evaluation of the role of syringomycin in plant pathogenesis by using Tn5-mutants of Pseudomonas syringae pv syringae defective in syringomycin production, Appl Environ Microbiol, 54, 1345, 10.1128/AEM.54.6.1345-1353.1988
Xu, 1988, Physical and functional analyses of the syrA gene and syrB gene involved in syringomycin production by Pseudomonas syringae pv syringae, J Bacteriol, 170, 5680, 10.1128/jb.170.12.5680-5688.1988