Sản xuất Axit Indole-3-Acet ic bởi Actinobacteria Streptomyces sp. En-1 Tách Biệt từ Các Loại Thực Vật Dược Liệu

Lan Lin1, Xudong Xu1
1Department of Bioengineering, Medical School, Southeast University, Nanjing, China

Tóm tắt

Actinobacteria gắn với thực vật là nguồn phong phú các hợp chất sinh học có hoạt tính, bao gồm các phân tử có nguồn gốc từ indole như phytohormone axit indole-3-acetic (IAA). Vì có ít nghiên cứu liên quan đến tổng hợp IAA bởi các actinobacteria nội sinh, nghiên cứu này đánh giá tiềm năng sản xuất IAA ở các chủng streptomycete nội sinh được thu thập từ các loài thực vật dược liệu Taxus chinensis và Artemisia annua. Bằng cách phân tích HPLC của IAA kết hợp với phương pháp sàng lọc phân tử của iaaM, một yếu tố di truyền xác định việc tổng hợp IAA của streptomycete thông qua indole-3-acetamide (IAM), dữ liệu của chúng tôi cho thấy khả năng hoạt động của quá trình tổng hợp IAA thông qua IAM ở Streptomyces sp. En-1 có nguồn gốc nội sinh từ Taxus chinensis. Hơn nữa, sử dụng hệ thống đồng nuôi cấy giữa cây mô hình Arabidopsis thaliana và streptomycete, En-1 được phát hiện là đã xâm nhập vào các tế bào trong mô của Arabidopsis, một vật chủ thay thế, và các tác động của việc cấy ghép En-1 nội sinh lên cây mô hình cũng đã được kiểm tra. Các tác động kích thích sinh trưởng của việc cấy ghép En-1 cho thấy Streptomyces sp. En-1 sản xuất IAA có nguồn gốc nội sinh có thể là ứng cử viên hứa hẹn cho việc ứng dụng trong việc cải thiện sự phát triển của các cây có giá trị kinh tế và nông nghiệp.

Từ khóa

#actinobacteria nội sinh #axit indole-3-acetic #Streptomyces #Taxus chinensis #Artemisia annua #kích thích sinh trưởng

Tài liệu tham khảo

Patten CL, Glick BR (2002) Role of Pseudomonas putida indole-acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

El-Deeb B, Bazaid S, Gherbawy Y, Elhariry H (2012) Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J Plant Interact 3:248–253

Pereira GVDM, Magalhães KT, Lorenzetii ER, Souza TP, Schwan RF (2012) A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microb Ecol 63:405–417

Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss. J Basic Microbiol 51:550–556

Kim YC, Leveau J, Gardener BBM, Pierson EA, Pierson LS, Ryu C-M (2011) The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol 77:1548–1555

Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ, Kim YC (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase. GacS Curr Microbiol 52:473–475

Sekine M, Ichikawa T, Kuga N, Kobayashi M, Sakurai A, Syono K (1988) Detection of the IAA biosynthetic pathway from tryptophan via indole-3-acetamide in Bradyrhizobium spp. Plant Cell Physiol 29:867–874

Malhotra M, Srivastava S (2006) Targeted engineering of Azospirillum brasilense SM with indole acetamide pathway for indole acetic acid over-expression. Can J Microbiol 52:1078–1084

Furukawa T, Koga J, Adachi T, Kishi K, Syono K (1996) Efficient conversion of l-tryptophan to indole-3-acetic acid and/or tryptophol by some species of Rhizoctonia. Plant Cell Physiol 37:899–905

Robinson M, Riov J, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64:5030–5032

Prusty R, Hunter A, Kashpur O, Normanly J (2010) Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics 185:211–220

Legault GS, Lerat S, Nicolas P, Beaulieu C (2011) Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 101:1045–1051

Manulis S, Shafrir H, Epstein E, Lichter A, Barash I (1994) Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp. Microbiology 140:1045–1050

Narayana KJ, Peddikotla P, Krishna PSJ, Venketeswarlu Y, Vijayalakshmi M (2009) Indole-3-acetic acid production by Streptomyces albidoflavus. J Biol Res THESSALONIKI 11:49–55

Somers E, Ptacek D, Gysegom P, Srinivasan M, Vanderley-den J (2005) Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole-3-acetic acid biosynthesis. Appl Environ Microbiol 71:1803–1810

Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism -plant signaling. FEMS Microbiol Rev 31:425–448

Lin L, Tan RX (2011) Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev 111:2734–2760

Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438

Arnold AE, Mejía LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100:15649–15654

Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

Thomas P, Soly TA (2009) Endophytic bacteria associated with growing shoot tips of banana (Musa sp.) cv. Grand Naine and the affinity of endophytes to the host. Microb Ecol 58:952–964

Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 186:5384–5391

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236:1849–1861

Conn VM, Walker AR, Franco CMM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21:208–218

Gutierrez RMP, Gonzalez AMN, Ramirez AM (2012) Compounds derived from endophytes: a review of phytochemistry and pharmacology. Curr Med Chem 19:2992–3030

Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17:1153–1161

Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins by a microplate method. Lett Appl Microbiol 20:282–285

Dubeau M-P, Poulin-Laprade D, Ghinet MG, Brzezinski R (2011) Properties of CsnR, the transcriptional repressor of the chitosanase gene, csnA, of Streptomyces lividans. J Bacteriol 193:2441–2450

Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18

Idris EE, Iglesias DJ, Talon M, Borriss R (2007) Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus myloliquefaciens FZB42. Mol Plant Microbe Interact 20:619–626

Comai L, Kosuge T (1980) Involvement of plasmid deoxyribonucleic acid in indole acetic acid synthesis in Pseudomonas savastanoi. J Bacteriol 143:950–957

Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and l-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

Cao L, Qiu Z, You J, Tan H, Zhou S (2004) Isolation and characterization of endophytic Streptomyces strains from surface-sterilized tomato (Lycopersicon esculentum) roots. Lett Appl Microbiol 39:425–430

Shimizu M, Yazawa S, Ushijima Y (2009) A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J Gen Plant Pathol 75:27–36

Carol AB, Ma C, Moore E et al (2009) Multiple, novel biologically active endophytic actinomycetes isolated from upper Amazonian rainforests. Microb Ecol 58:374–383