Individualized medicine using 3D printing technology in gynecology: a scoping review
Tóm tắt
Từ khóa
Tài liệu tham khảo
Flaxman TE, Cooke CM, Miguel OX, et al. A review and guide to creating patient specific 3D printed anatomical models from MRI for benign gynecologic surgery. 3D Print Med. 2021;7:17. https://doi.org/10.1186/s41205-021-00107-7.
Tack P, Victor J, Gemmel P, et al. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. https://doi.org/10.1186/s12938-016-0236-4.
Martelli N, Serrano C, van den Brink H, et al. Advantages and disadvantages of 3-dimensional printing in surgery: a systematic review. Surgery. 2016;159(6):1485–500. https://doi.org/10.1016/j.surg.2015.12.017.
Jiang M, Chen G, Coles-Black J, et al. Three-dimensional printing in orthopaedic preoperative planning improves intraoperative metrics: a systematic review. ANZ J Surg. 2020;90(3):243–50. https://doi.org/10.1111/ans.15549.
Wilcox B, Mobbs RJ, Wu AM, et al. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017;3(3):433–43. https://doi.org/10.21037/jss.2017.09.01.
Randazzo M, Pisapia JM, Singh N, et al. 3D printing in neurosurgery: a systematic review. Surg Neurol Int. 2016;7(Suppl 33):S801–S09. https://doi.org/10.4103/2152-7806.194059.
Bauermeister AJ, Zuriarrain A, Newman MI. Three-dimensional printing in plastic and reconstructive surgery: a systematic review. Ann Plast Surg. 2016;77(5):569–76. https://doi.org/10.1097/SAP.0000000000000671.
Cacciamani GE, Okhunov Z, Meneses AD, et al. Impact of three-dimensional printing in urology: state of the art and future perspectives. A systematic review by ESUT-YAUWP group. Eur Urol. 2019;76(2):209–21. https://doi.org/10.1016/j.eururo.2019.04.044.
Diment LE, Thompson MS, Bergmann JHM. Clinical efficacy and effectiveness of 3D printing: a systematic review. BMJ Open. 2017;7(12):e016891. https://doi.org/10.1136/bmjopen-2017-91.
PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73. https://doi.org/10.7326/M18-0850.
Ajao MO, Clark NV, Kelil T, et al. Case report: three-dimensional printed model for deep infiltrating endometriosis. J Minim Invasive Gynecol. 2017;24(7):1239–42. https://doi.org/10.1016/j.jmig.2017.06.006 Epub 17 Jun 19.
Baek M-H, Kim D-Y, Kim N, et al. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer. J Surg Oncol. 2016;114(2):150–2. https://doi.org/10.1002/jso.24292.
Barbosa MZ, Zylbersztejn DS, de Mattos LA, et al. Three-dimensionally-printed models in reproductive surgery: systematic review and clinical applications. Minerva Ginecol. 2019;71(3):235–44. https://doi.org/10.23736/S0026-4784.19.04319-3.
Barsky M, Kelley R, Bhora FY, et al. Customized pessary fabrication using three-dimensional printing technology. Obstet Gynecol. 2018;131(3):493–7. https://doi.org/10.1097/AOG.0000000000002461.
Chang A. 3D printing technology is a feasible and efficient tool for pre-planning for image guided brachytherapy of cervix cancers. Brachytherapy. 2018;17(4 Supplement 1):S111.
Chen J, He H, Song T, et al. Utilizing 3D printing model of placenta percreta to guide obstetric operation. Obstet Gynecol. 2017;129(1):42S.
Flaxman T, Cooke CM, Sheikh A, et al. Pre-surgical planning using patient-specific 3D printed anatomical models for women with uterine fibroids. J Minim Invasive Gynecol. 2020;27(7):S71–2. https://doi.org/10.1016/j.jmig.2020.08.596.
Hadden R, Grover S, Chuen J, et al. Utility of 3D printed models of Mullerian anomalies as a teaching tool. 3D Print Med Conference. 2018;4(Supplement 1). https://doi.org/10.1186/s41205-018-0036-5.
Kudla M, Batchelar D, Crook J, et al. Custom applicator design and manufacture automation for interstitial gynecological brachytherapy. Brachytherapy. 2019;18(3):S14. https://doi.org/10.1016/j.brachy.2019.04.035.
Laan RC, Nout RA, Dankelman J, et al. MRI-driven design of customised 3D printed gynaecological brachytherapy applicators with curved needle channels. 3D Print Med. 2019;5(1):8. https://doi.org/10.1186/s41205-019-0047-x.
Lindegaard JC, Madsen ML, Traberg A, et al. Individualised 3D printed vaginal template for MRI guided brachytherapy in locally advanced cervical cancer. Radiother Oncol. 2016;118(1):173–5. https://doi.org/10.1016/j.radonc.2015.12.012.
Logar HBZ, Hudej R, Segedin B. Development and assessment of 3D-printed individual applicators in gynecological MRI-guided brachytherapy. J Contemp Brachytherapy. 2019;11(2):128–36. https://doi.org/10.5114/jcb.2019.84741.
Logar H, Hudej R, Kobav M. 3d-printed multi-channel vaginal applicator for brachytherapy in gynecological cancer. International J Gynecol Cancer. 2020;30(4):A102–A03. https://doi.org/10.1136/ijgc-2020-ESGO.178.
Mackey A, Ng JI, Core J, et al. Three-dimensional-printed uterine model for surgical planning of a cesarean delivery complicated by multiple Myomas. Obstet Gynecol. 2019;133(4):720–4. https://doi.org/10.1097/AOG.0000000000003107.
Mohammadi R, Siavashpour Z, Aghdam SRH, et al. Manufacturing and evaluation of multi-channel cylinder applicator with 3D printing technology. J Contemp Brachytherapy. 2021;13(1):80–90. https://doi.org/10.5114/jcb.2021.103590.
Pavan LI, Bourguignon GA, Ubertazzi EP. Vaginoplasty: modified McIndoe using xenograft and a tailored 3D-printer mold. Int Urogynecol J Pelvic Floor Dysfunct. 2021;04:04. https://doi.org/10.1007/s00192-021-04689-y.
Petric P, Fokdal LU, Traberg Hansen A, et al. 3D-printed tandem-needle-template for image guided adaptive brachytherapy in cervical cancer. Radiother Oncol. 2019;133(1):S87. https://doi.org/10.1016/S0167-8140%2819%2930595-X.
Qu A, Sun H, Wang J, et al. 3D Printing Individual Applicator Used for Interstitial Brachytherapy in Recurrent Cervical Cancer. Brachytherapy. 2017;16(3 Supplement):S68-9. https://doi.org/10.1016/j.brachy.2017.04.119.
Qu A, Wang JJ, Jiang YL, et al. Comparison of planning between 3D-printing non-coplanar template and 3D-printing coplanar template assisted radioactive seed implantation as re-irradiation for Pelvic Wall recurrent gynecologic malignant tumors. Int J Radiation Oncol Biol Physics. 2019;105(1):E711. https://doi.org/10.1016/j.ijrobp.2019.06.875.
Qu A, Jiang P, Wei S, et al. Accuracy and dosimetric parameters comparison of 3D-printed non-coplanar template-assisted computed tomography-guided iodine-125 seed ablative brachytherapy in pelvic lateral recurrence of gynecological carcinomas. J Contemp Brachytherapy. 2021;13(1):39–45. https://doi.org/10.5114/JCB.2021.103585.
Reddy H, Maghsoudlou P, Pepin K, et al. Use of 3D model in laparoscopic myomectomy. J Minim Invasive Gynecol. 2019;26(7):S19. https://doi.org/10.1016/j.jmig.2019.09.507.
Sayed Aluwee SAZB, Zhou X, Kato H, et al. Evaluation of pre-surgical models for uterine surgery by use of three-dimensional printing and mold casting. Radiol Phys Technol. 2017;10(3):279–85. https://doi.org/10.1007/s12194-017-0397-2.
Sekii S, Tsujino K, Kosaka K, et al. Inversely designed, 3D-printed personalized template-guided interstitial brachytherapy for vaginal tumors. J Contemp Brachyther. 2018;10(5):470–7. https://doi.org/10.5114/jcb.2018.78832.
Semeniuk O, Cherpak A, Robar J. Design and evaluation of 3D printable patient-specific applicators for gynecologic HDR brachytherapy. Med Phys. 2021;20:20. https://doi.org/10.1002/mp.14888.
Sethi R, Cunha JAN, Mellis K, et al. 3d printed custom applicator for high-dose-rate intracavitary vaginal cuff brachytherapy. Brachytherapy. 2014;13:S93.
Sethi R, Cunha A, Mellis K, et al. Clinical applications of custom-made vaginal cylinders constructed using three-dimensional printing technology. J Contemp Brachytherapy. 2016;8(3):208–14. https://doi.org/10.5114/jcb.2016.60679.
Wadi-Ramahi S, Jastaniyah N, Constantinescu C, et al. 3D printed patient-specific mould for HDR gyn treatment. Med Phys. 2018;45(6):e594–e95. https://doi.org/10.1002/mp.12938.
Wang F, Luo H, Cheng H, et al. Is 3D printinggided threedimensional brachytherapy suitable for cervical cancer: from one single research institute? Eur J Gynaecol Oncol. 2020;41(4):591–7. https://doi.org/10.31083/J.EJGO.2020.04.4932.
Yuan X, Zhang Y, Miao J, et al. Dosimetric analysis of 3D-printed minimally invasive-guided template in the combined intracavitary/interstitial brachytherapy treatment of locally advanced cervical cancer. Int J Gynecologic Cancer. 2019;29(4):A284.
Zhao J, Liang Y, Liu Z, et al. Dosimetry verification of 3D-printing template assisted 125I Seedinterstitial brachytherapy for retroperitoneal lymph node metastasis in Gynecologicaloncology. Brachytherapy. 2019;18(3):S103. https://doi.org/10.1016/j.brachy.2019.04.225.
Zhao Z, Tang X, Mao Z, et al. The design of an individualized cylindrical vaginal applicator with oblique guide holes using 3D modeling and printing technologies. J Contemp Brachytherapy. 2019;11(5):479–87. https://doi.org/10.5114/jcb.2019.88441.
Jonathan S. Berek NFH, illustrations and design by Tim Hengst GBDB. Berek & Hacker's gynecologic oncology. 5th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2010.
Glaser SM, Mohindra P, Mahantshetty U, et al. Complications of intracavitary brachytherapy for gynecologic cancers and their management: a comprehensive review. Brachytherapy. 2021;20(5):984–94.
Jiang P, Qu A, Wei S, et al. The preliminary results of 3-dimensional printed individual template assisted 192Ir high-dose rate interstitial brachytherapy for central recurrent gynecologic Cancer. Technol Cancer Res Treat. 2020;19:1533033820971607. https://doi.org/10.1177/1533033820971607.
Tudela F, Kelley R, Ascher-Walsh C, et al. Low cost 3D printing for the creation of cervical cerclage pessary used to prevent preterm birth: a preliminary study. Obstet Gynecol. 2016;127(1):154S. https://doi.org/10.1097/01.AOG.0000483614.84976.50.
Stitely ML, Paterson H. Using three-dimensional printing to fabricate a tubing connector for dilation and evacuation. Obstet Gynecol. 2016;127(2):317–9. https://doi.org/10.1097/AOG.0000000000001237.
Kondoh E, Chigusa Y, Ueda A, et al. Novel intrauterine balloon tamponade systems for postpartum hemorrhage. Acta Obstet Gynecol Scand. 2019;98(12):1612–7. https://doi.org/10.1111/aogs.13692.
Wolford JE, Crawford E, Tewari SE, et al. Pilot study of 3d printed vaginal speculums (3dps) for screen-and-treat cervical neoplasia program in Mwanza, Tanzania. Int J Gynecol Cancer. 2018;28(2):86. https://doi.org/10.1097/01.IGC.0000546279.09648.02.
Welsh N, Wilson M, Malcolm K, et al. 3D printing of microbicide vaginal rings: a proof-of-concept study. AIDS Res Hum Retrovir. 2016;32(1):114. https://doi.org/10.1089/aid.2016.5000.abstracts.
Tappa K, Jammalamadaka U, Ballard DH, et al. Medication eluting devices for the field of OBGYN (MEDOBGYN): 3D printed biodegradable hormone eluting constructs, a proof of concept study. PLoS One. 2017;12(8):e0182929. https://doi.org/10.1371/journal.pone.0182929.
Walker L, Chen Y, Traore YL, et al. Mathematical prediction of hydrophilic chemotherapeutic elution kinetics from a reservoir polyurethane intravaginal ring fabricated by fused deposition modeling 3D printing. J Pharm Pharm Sci. 2017;20(2):122s.
Benhabbour SR, Janusziewicz R, Mecham S, et al. Innovative 3D printed intravaginal rings: reengineering multipurpose intravaginal rings for prevention of HIV and unintended pregnancy. AIDS Res Hum Retrovir. 2018;34(1):72. https://doi.org/10.1089/aid.2018.5000.abstracts.
Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1–2):75–82. https://doi.org/10.1016/j.ijpharm.2018.01.036.
Tiboni M, Campana R, Frangipani E, et al. 3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int J Pharm. 2021;596:120290. https://doi.org/10.1016/j.ijpharm.2021.120290.
Crain CL, Winfrey OK, Jackson WL, et al. Teaching pediatric straddle injury repair with use of a 3D printed model. J Pediatr Adolesc Gynecol. 2021;34(6):862–4. https://doi.org/10.1016/j.jpag.2021.05.005.
Towner MN, Lozada-Capriles Y, LaLonde A, et al. Creation and piloting of a model for simulating a minimally invasive myomectomy. Cureus. 2019;11(3):e4223. https://doi.org/10.7759/cureus.4223.