Individual differences in error tolerance in humans: Neurophysiological evidences

Springer Science and Business Media LLC - Tập 15 - Trang 808-821 - 2015
Gonçalo Padrao1,2, Aida Mallorquí3, David Cucurell1,2, Antoni Rodriguez-Fornells4,2
1Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute-] IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
2Department of Basic Psychology, Campus Bellvitge, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
3Sant Pere Claver Health Foundation, Mental Health Services, Barcelona, Spain
4Cognition and Brain Plasticity Group [Bellvitge Biomedical Research Institute]- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain

Tóm tắt

When interacting in error-prone environments, humans display different tolerances to changing their decisions when faced with erroneous feedback information. Here, we investigated whether these individual differences in error tolerance (ET) were reflected in neurophysiological mechanisms indexing specific motivational states related to feedback monitoring. To explore differences in ET, we examined the performance of 80 participants in a probabilistic reversal-learning task. We then compared event-related brain responses (ERPs) of two extreme groups of participants (High ET and Low ET), which showed radical differences in their propensity to maintain newly learned rules after receiving spurious negative feedback. We observed that High ET participants showed reduced anticipatory activity prior to the presentation of incoming feedback, informing them of the correctness of their performance. This was evidenced by measuring the amplitude of the stimulus-preceding negativity (SPN), an ERP component indexing attention and motivational engagement of incoming informative feedback. Postfeedback processing ERP components (the so-called Feedback-Related Negativity and the P300) also showed reduced amplitude in this group (High ET). The general decreased responsiveness of the High ET group to external feedback suggests a higher proneness to favor internal(rule)-based strategies, reducing attention to external cues and the consequent impact of negative evaluations on decision making. We believe that the present findings support the existence of specific cognitive and motivational processes underlying individual differences on error-tolerance among humans, contributing to the ongoing research focused on understanding the mental processes behind human fallibility in error-prone scenarios.

Tài liệu tham khảo

Albert, R., Jeong, H., & Barabasi, A. -L. (2000). Error and atack tolerance of complex networks. Nature, 406, 378–382. Aston-Jones, G., & Cohen, J. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44, 1175–1184. Barcelo, F., Escera, C., Corral, M. J., & Perianez, J. A. (2006). Task switching and novelty processing activate a common neural network for cognitive control. Journal of Cognitive Neuroscience, 18, 1734–1748. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33–84. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. Brunia, C. H., Hackley, S. A., van Boxtel, G. J., Kotani, Y., & Ohgami, Y. (2011). Waiting to perceive: Reward or punishment? Clinical Neurophysiology, 122, 858–868. Cañas, J. J., Quesada, J. F., Antoli, A., & Fajardo, I. (2003). Cognitive flexibility and adaptability to environmental changes in dynamic complex problem-solving tasks. Ergonomics, 46, 482–501. Carter, C., Braver, T., Barch, D., Botvinick, M., Noll, D., & Cohen, J. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747–749. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333. Casey, S. M. (2006). The atomic chef: And other true tales of design, technology, and human error. Santa Barbara, CA: Aegean. Chase, H. W., Swainson, R., Durham, L., Benham, L., & Cools, R. (2011). Feedback-related negativity codes prediction error but not behavioral adjustment during probabilistic reversal learning. Journal of Cognitive Neuroscience, 23, 936–946. Cunillera, T., Fuentemilla, Ll., Periañez, J., Marco-Pallarès, J., Krämer, U., Càmara, E., … Rodríguez-Fornells, A. (2012). Brain oscillatory activity associated to task-switching and feedback processing. Cognitive, Affective, and Behavioral Neuroscience, 12, 16–33. Donchin, E., & Coles, M. G. H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357–374. Fields, R. E., Wright, P. C., & Harrison, M. D. (1995). A task centered approach to analysing human error tolerance requirements. In (pp. 18-26). doi:10.1109/ISRE.1995.512542. Fischer, A. G., & Ullsperger, M. (2013). Real and fictive outcomes are processed differently but converge on a common adaptive mechanism. Neuron, 79, 1243–1255. Fuentemilla, L., Cucurell, D., Marco-Pallares, J., Guitart-Masip, M., Moris, J., & Rodriguez-Fornells, A. (2013). Electrophysiological correlates of anticipating improbable but desired events. NeuroImage, 78, 135–144. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385–390. Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279–2282. Gratton, G., Coles, M. G. H., Sirebaag, E. G., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. Houde, J. F., & Nagarajan, S. S. (2011). Speech production as state feedback control. Frontiers in Human Neuroscience, 5. doi:10.3389/fnhum.2011.00082. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., & Barabasi, A. -L. (2001). The large-scale organization of metabolic network. Nature, 407, 654. Jocham, G., Neumann, J., Klein, T. A., Danielmeier, C., & Ullsperger, M. (2009). Adaptive coding of action values in the human rostral cingulate zone. Journal of Neuroscience, 29, 7489–7496. Kotani, Y., Kishida, S., Hiraku, S., Suda, K., Ishii, M., & Aihara, Y. (2003). Effects of information and reward on stimulus-preceding negativity prior to feedback stimuli. Psychophysiology, 40, 818–826. Marco-Pallares, J., Camara, E., Munte, T. F., & Rodriguez-Fornells, A. (2008). Neural mechanisms underlying adaptive actions after slips. Journal of Cognitive Neuroscience, 20, 1595–1610. Masaki, H., Takeuchi, S., Gehring, W. J., Takasawa, N., & Yamasaki, K. (2006). Affective-motivational influences on feedback-related ERPs in a gambling task. Brain Research, 1105, 110–121. Moris, J., Luque, D., & Rodriguez-Fornells, A. (2013). Learning-induced modulations of the stimulus-preceding negativity. Psychophysiology, 50, 931–939. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. (2005). Decision making, the p3, and the locus coeruleus-norepinephrine system. Psychological Review, 131, 510–532. Nieuwenhuis, S., Holroyd, C. B., Mol, N., & Coles, M. G. H. (2004). Reinforcement-related brain potentials from medial frontal cortex: Origins and functional significance. Neuroscience and Biobehavioral Reviews, 28, 441–448. Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1–15. Norman, D. A. (1988). The design of everyday things. New York, NY: Doubleday. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, D. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (pp. 1–18). New York, NY: Plenum Press. O’Connell, R. G., Dockree, P. M., & Kelly, S. P. (2012). A supramodal accumulation-to-bound signal that determines perceptual decisions in humans. Nature Neuroscience, 15, 1729–1735. Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology, 9, 456–479. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148. Rasmussen, J. (1983). Skills, rules and knowledge: Signals, signs and symbols distinctions in human performance models. IEEE Transactions on Systems, Man and Cybernetics, SMC-13, 257–266. Rasmussen, J., & Vicente, K. J. (1989). Coping with human errors through system design: implications from ecological interface design. International Journal of Man-Machine Studies, 31, 517–534. Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press. Riba, J., Rodriguez-Fornells, A., Morte, A., Münte, T. F., & Barbanoj, M. J. (2005). Noradrenergic stimulation enhances human action monitoring as revealed by event-related brain potentials. Journal of Neuroscience, 25, 4370–4374. Ridderinkhof, K. R., Ramautar, J. R., & Wijnen, J. G. (2009). To PE or not to PE: A P3-like ERP component reflecting the processing of response errors. Psychophysiology, 46, 531–538. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443–447. Rodriguez-Fornells, A., Kurzbuch, A. R., & Munte, T. F. (2002). Time course of error detection and correction in humans: Neurophysiological evidence. Journal of Neuroscience, 22, 9990–9996. Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., & O’Relly, R. C. (2005). Prefrontal cortex and flexible cognitive control: Rules without symbols. PNAS, 12, 7338–7343. Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283, 549–554. Spiro, R. J., Coulson, R. L., Feltovich, P. J., & Andersib, D. K. (1988). Cognitive flexibility theory: Advanced knowledge acquisition in ill-structured domains. In V. Patel (Ed.), Proceedings of the 10th annual conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum. Steinhauser, M., & Yeung, N. (2010). Decision processes in human performance monitoring. Journal of Neuroscience, 30, 15643–15653. Sternad, D., Abe, M. O., Hu, X., & Muller, H. (2011). Neuromotor noise, error tolerance and velocitydependent costs in skilled performance. PLoS Comput Biol, 7, e1002159. doi:10.1371/journal.pcbi.1002159. Torrubia, R., Ávila, C., Moltó, J., & Caseras, X. (2001). The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Personality and Individual Differences, 31, 837–862. Ullsperger, M., Danielmeier, C., & Jocham, G. (2014a). Neurophysiology of performance monitoring and adaptive behavior. Physiological Reviews, 94, 35–79. Ullsperger, M., Fischer, A. G., Nigburg, R., & Endrass, T. (2014b). Neural mechanisms and temporal dynamics of performance monitoring. Trends in Cognitive Science, 18, 259–267. Wiegmann, D. A., & Shappell, S. A. (2003). A human error approach to aviation accident analysis. Aldershot, UK: Ashgate. Woods, D. D. (1994). Behind human error: Cognitive systems, computers, and hindsight. Wright-Patterson Air Force Base, OH: Crew System Ergonomics Information Analysis Center. Yeung, N., Holroyd, C. B., & Cohen, J. D. (2005). ERP correlates of feedback and reward processing in the presence and absence of response choice. Cerebral Cortex, 15, 535–544.