Individual Tree Diameter and Height Growth Models for 30 Tree Species in Mixed-Species and Uneven-Aged Forests of Mexico

Forests - Tập 11 Số 4 - Trang 429
Jaime Briseño-Reyes1, José Javier Corral-Rivas2, Raúl Solís-Moreno2, Jaime Roberto Padilla-Martínez2, Daniel José Vega-Nieva2, Pablito Marcelo López-Serrano3, Benedicto Vargas-Larreta4, Ulises Diéguez‐Aranda5, Gerónimo Quiñonez-Barraza, Carlos A. López‐Sánchez6
1Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales, Universidad Juárez del Estado de Durango, Constitución 404 sur Zona Centro, Durango 34000, Mexico;
2Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Río Papaloapan y Blvd. Durango S/N Col. Valle del Sur, Durango 34120, Mexico;
3Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Boulevard del Guadiana 501, Ciudad Universitaria, Torre de Investigación, Durango 34120, Mexico;
4Tecnológico Nacional de México/Instituto Tecnológico de El Salto. Tecnológico 101, Col. La Forestal, El Salto, Durango 34942, Mexico;
5Unidad de Gestión Ambiental y Forestal Sostenible, Departamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela. Escuela Politécnica Superior, C/Benigno Ledo, Campus Terra, 27002 Lugo, Spain;
6Departamento de Biología de Organismos y Sistemas, Escuela Politécnica de Mieres, Universidad de Oviedo, C\Gonzalo Gutiérrez de Quirós s/n, 33600 Mieres (Asturias), Spain;

Tóm tắt

Lack of knowledge of individual tree growth in species-rich, mixed forest ecosystems impedes their sustainable management. In this study, species-specific models for predicting individual diameter at breast height (dbh) and total tree height (h) growth were developed for 30 tree species growing in mixed and uneven-aged forest stands in Durango, Mexico. Growth models were also developed for all pine, all oaks, and all other species of the genus Arbutus (strawberry trees). A database of 55,158 trees with remeasurements of dbh and h of a 5-year growth period was used to develop the models. The data were collected from 217 stem-mapped plots located in the Sierra Madre Occidental (Mexico). Weighted regression was used to remove heteroscedasticity from the species-specific dbh and h growth models using a power function of the tree size independent variables. The final models developed in the present study to predict dbh and total tree height growth included size variables, site factors, and competition variables in their formulation. The developed models fitted the data well and explained between 98 and 99% and of the observed variation of dbh, and between 77 and 98% of the observed variation of total tree height for the studied species and groups of species. The developed models can be used for estimating the individual dbh and h growth for the analyzed species and can be integrated in decision support tools for management planning in these mixed forest ecosystems.

Từ khóa


Tài liệu tham khảo

Tenzin, 2017, Individual tree basal area increment models for broadleaved forests in Bhutan, For. Int. J. For. Res., 90, 367

Perin, 2016, Distance independent tree basal area growth models for Norway spruce Douglas-fir and Japanese larch in Southern Belgium, Eur. J. For. Res., 136, 193, 10.1007/s10342-016-1019-y

Zhao, 2018, Considering neighborhood effects improves individual dbh growth models for natural mixed-species forests in Mexico, Ann. For. Sci., 75, 78, 10.1007/s13595-018-0762-2

Pretzsch, H. (2009). Forest Dynamics, Growth and Yield, Springer.

Lhotka, 2011, An individual-tree diameter growth model for managed uneven-aged oak-shortleaf pine stands in the Ozark Highlands of Missouri, USA, For. Ecol. Manag., 261, 770, 10.1016/j.foreco.2010.12.008

Andreassen, 2003, Basal area growth models for individual trees of Norway spruce, Scots pine, birch and other broadleaves in Norway, For. Ecol. Manag., 180, 11, 10.1016/S0378-1127(02)00560-1

Burkhart, H.E., and Tomé, M. (2012). Growth and Yield Models for Uneven-Aged Stands. Modeling Forest Trees and Stands, Springer. [1st ed.].

Kiviste, A., González, J.G.Á., Alboreca, A.R., and González, A.D.R. (2002). Funciones de Crecimiento de Aplicación en el ámbito Forestal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaría (INIA). [1st ed.].

Vanclay, J.K. (1994). Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests, CAB International. [1st ed.].

Martin, 1984, A comparison of competition measures and growth models for predicting plantation red pine diameter and height growth, For. Sci., 30, 731

Monserud, 1996, A basal area increment model for individual trees growing in even-and uneven-aged forest stands in Austria, For. Ecol. Manag., 80, 57, 10.1016/0378-1127(95)03638-5

Groot, 1999, An individual-tree basal area growth model for black spruce in second-growth peatland stands, Can. J. For. Res., 29, 621, 10.1139/x99-032

Contreras, 2011, Evaluating tree competition indices as predictors of basal area increment in western Montana forests, For. Ecol. Manag., 262, 1939, 10.1016/j.foreco.2011.08.031

Russel, 2014, Comparing strategies for modeling individual-tree height and heigth-to-crown base increment in mixed-species Acadian forests of northeastern North America, Eur. J. For. Res., 133, 1121, 10.1007/s10342-014-0827-1

Zhang, 2017, The effect of tree size, neighborhood competition and environment on tree growth in an old-growth temperate forest, J. Plant Ecol., 10, 970

Canham, 2006, Neighborhood analyses of canopy tree competition along environmental gradients in New England forests, Ecol. Appl., 16, 540, 10.1890/1051-0761(2006)016[0540:NAOCTC]2.0.CO;2

Fien, 2019, Drivers of individual tree growth and mortality in an uneven-aged, mixed-species conifer forest, For. Ecol. Manag., 449, 117446, 10.1016/j.foreco.2019.06.043

Aakala, 2013, Influence of competition and age on tree growth in structurally complex old-growth forests in northern Minnesota, USA, For. Ecol. Manag., 308, 128, 10.1016/j.foreco.2013.07.057

Franklin, 2002, Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example, For. Ecol. Manag., 155, 399, 10.1016/S0378-1127(01)00575-8

Zhao, 2006, Modeling neighborhood effects on the growth and survival of individual trees in a natural temperate species-rich forest, Ecol. Model, 196, 90, 10.1016/j.ecolmodel.2006.02.002

Roberts, 2008, Individual tree growth response to variable-density thinning in coastal Pacific Northwest forests, For. Ecol. Manag., 255, 2771, 10.1016/j.foreco.2008.01.043

Woodall, 2003, Intertree competition in uneven-aged ponderosa pine stands, Can. J. For. Res., 33, 1719, 10.1139/x03-096

Amaro, A., Reed, D., and Soares, P. (2003). GLOBTREE: An individual tree growth model for Eucalyptus globulus in Portugal. Modelling Forest Systems, CAB International. [1st ed.].

Larocque, 2013, Competition theory-science and application in mixed forest stands: review of experimental and modelling methods and suggestions for future research, Environ. Rev., 21, 71, 10.1139/er-2012-0033

Bartelink, 2002, Modelling mixed forest growth: A review of models for forest management, Ecol. Model, 150, 141, 10.1016/S0304-3800(01)00476-8

González-Elizondo, M.S., González-Elizondo, M., and Márquez-Linares, M.A. (2007). Vegetación y Ecorregiones de Durango, Instituto Politécnico Nacional. [1st ed.].

Wehenkel, 2017, Species-specific and regional volume models for 12 forest species in Durango, Mexico, Rev. Chapingo Ser. Cie., 23, 155

2015, Characterization of diameter structures of natural forests of northwest of Durango, Mexico, Rev. Chapingo Ser. Cie., 21, 221

2014, Local and generalized height-diameter models with random parameters for mixed, uneven-aged forests in Northwestern Durango, Mexico, For. Ecosyst., 1, 6, 10.1186/2197-5620-1-6

Silva-Flores, R., Pérez-Verdín, G., and Wehenkel, C. (2014). Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico. PLoS ONE, 9.

2004, Compatible height and site index models for five pine species in El Salto, Durango (Mexico), For. Ecol. Manag., 201, 145, 10.1016/j.foreco.2004.05.060

Nagel, 2010, Modelos de crecimiento de árbol individual: Aplicación del Simulador BWINPro7, Madera Bosques, 16, 81

2013, Modelo compatible altura-índice de sitio para cuatro especies de pino en Santiago Papasquiaro, Durango, Rev. Mex. Cienc. For., 4, 89

2006, Evaluación de índices de competencia independientes de la distancia para predecir el crecimiento de bosques mezclados en San Dimas, Durango, Rev. Chapingo Ser. Cie., 12, 39

Corral, 2005, The effect of competition on individual tree basal area growth in mature stands of Pinus cooperi Blanco in Durango (Mexico), Eur. J. For. Res., 124, 133, 10.1007/s10342-005-0061-y

Castedo, 2007, A merchantable volume system for major pine species in El Salto, Durango (Mexico), For. Ecol. Manag., 238, 118, 10.1016/j.foreco.2006.09.074

2017, SiBiFor: Forest Biometric System for forest management in Mexico, Rev. Chapingo Ser. Cie., 23, 437

Wehenkel, 2014, Can random components explain differences in the height–diameter relationship in mixed uneven-aged stands?, Ann. For. Sci., 71, 51, 10.1007/s13595-013-0332-6

Corral Rivas, J.J., Larreta, V., Calderón, A., and Alberto, O. (2009). Guía Para el Establecimiento de Sitios de Investigación Forestal y de Suelos en Bosques del Estado de Durango, Editorial de la Universidad Juárez del Estado de Durango. [1st ed.].

Wykoff, 1990, A basal area increment model for individual conifers in the Northern Rocky Mountains, For. Sci., 36, 1077

Wykoff, W.R., Crookston, N.L., and Stage, A.R. (1982). User’s Guide to the Stand Prognosis Model, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. [1st ed.].

Gadow, 1999, Testing a new competition index for Maritime pine in northwestern Spain, Can. J. For. Res., 29, 280

Krajicek, 1961, Crown competition-a measure of density, For. Sci., 7, 35

R Core Team R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Available online: https://www.R-project.org/.

Myers, R.H. (1990). Classical and modern regression with applications, Duxbury Press. [1st ed.].

Soares, 2010, Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations, For. Ecol. Manag., 260, 1965, 10.1016/j.foreco.2010.08.044

Hann, 1999, An adjustable predictor of crown profile for stand-grown Douglas-fir trees, For. Sci., 45, 217

Park, 1966, Estimation with heteroscedastic error terms, Econometrica (pre-1986), 34, 888, 10.2307/1910108

Neter, J., Wasserman, W., and Kutner, M.H. (1990). Applied Linear Models, Regression, Analysis of Variance and Experimental Designs, Burr Ridge Irwin. [3rd ed.].

Huang, 2000, Development of ecoregion-based height–diameter models for white spruce in boreal forests, For. Ecol. Manag., 129, 125, 10.1016/S0378-1127(99)00151-6

Gadow, 2015, Grouping forest tree species on the Sierra Madre Occidental, Mexico, Allg. Forst. Jagdztg., 186, 63

Zhang, 2004, Individual-tree basal area growth models for jack pine and black spruce in northern Ontario, For. Chron., 80, 366, 10.5558/tfc80366-3

Baluarte, 2015, Modelamiento del crecimiento del tornillo (Cedrelinga catenaeformis) en plantaciones en Jenarno Herrera, Departamento de Loreto, Perú, Folio Amazonica, 24, 33

Zavala, 2008, Rank reversals in tree growth along tree size, competition and climatic gradients for four forest canopy dominant species in Central Spain, Ann. For. Sci., 65, 605, 10.1051/forest:2008040

Das, 2012, The effect of size and competition on tree growth rate in old-growth coniferous forests, Can. J. For. Res., 42, 1983, 10.1139/x2012-142

Russo, 2007, Growth-size scaling relationships of woody plant species differ from predictions of the Metabolic Ecology Model, Ecol. Lett., 10, 889, 10.1111/j.1461-0248.2007.01079.x

Stephenson, 2014, Rate of tree carbon accumulation increases continuously with tree size, Nature, 507, 90, 10.1038/nature12914

Zavala, 2011, Disentangling the relative importance of climate, size, and competition on tree growth in Iberian forests: Implications for forest management under global change, Glob. Change Biol., 17, 2400, 10.1111/j.1365-2486.2011.02421.x

Holzwarth, 2013, Many ways to die – partitioning tree mortality dynamics in a near-natural mixed deciduous forest, J. Ecol., 101, 220, 10.1111/1365-2745.12015

Fraver, 2014, Tree growth and competition in an old-growth Picea abies forest of boreal Sweden: Influence of tree spatial patterning, J. Veg. Sci., 25, 374, 10.1111/jvs.12096

Bowman, 2013, Detecting trends in tree growth: Not so simple, Trends Plant Sci., 18, 11, 10.1016/j.tplants.2012.08.005

Simard, 2005, Neighborhood size effects on mortality, growth and crown morphology of paper birch, For. Ecol. Manag., 214, 251, 10.1016/j.foreco.2005.04.009

King, 2005, Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia, Funct. Ecol., 19, 445, 10.1111/j.1365-2435.2005.00982.x

Metz, 2013, Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra-and interspecific competition on tree growth, For. Ecol. Manag., 310, 275, 10.1016/j.foreco.2013.08.014

Burkhart, 1989, Distance-dependent competition measures for predicting growth of individual trees, For. Sci., 35, 816

Biging, 1995, Evaluation of competition indices in individual tree growth models, For. Sci., 41, 360

Canham, 2004, A neighborhood analysis of canopy tree competition: Effects of shading versus crowding, Can. J. For. Res., 34, 778, 10.1139/x03-232

Coates, 2009, Above- versus below-ground competitive effects and responses of a guild of temperate tree species, J. Ecol., 97, 118, 10.1111/j.1365-2745.2008.01458.x

Pretzsch, 2013, Productivity of mixed versus pure stands of oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European beech (Fagus sylvatica L.) along an ecological gradient, Eur. J. For. Res., 132, 263, 10.1007/s10342-012-0673-y

Usher, M.B., and DeAngelis, D.L. (2001). Studying Competition. Competition, Springer Science & Business Media. [2nd ed.].

Adame, 2008, Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices, For. Ecol. Manag., 255, 1011, 10.1016/j.foreco.2007.10.019

Pukkala, 2009, Growth and yield models for uneven-sized forest stands in Finland, For. Ecol. Manag., 258, 207, 10.1016/j.foreco.2009.03.052

2003, Influence of the competition on the section growth in Pinus radiata D. Don, Inv. Agrar.-Sist. Rec. F., 12, 25

Gadow, 2019, Effects of density and structure on production in the communal forests of the Mexican Sierra Madre Occidental, South. For. J. For. Sci., 81, 1, 10.2989/20702620.2018.1463152

2009, A generalized height-diameter model with random coefficients for uneven-aged stands in El Salto, Durango (Mexico), Forestry, 84, 445

Abetz, 1974, Zur Standraumregulierung in Mischbeständen und Auswahl von Zukunftsbäumen, AFZ, 29, 871

Monserud, 1990, Genetic and environmental components of variation of site index in inland Douglas-fir, For. Sci., 36, 1

Hasenauer, 1994, Variation in potential volume yield of loblolly pine plantations, For. Sci., 40, 162

Linares, 2015, Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in Scots pine, For. Ecol. Manag., 358, 12, 10.1016/j.foreco.2015.08.034

Bigelow, S.W., Runkle, J.R., and Oswald, E.M. (2020). Competition, Climate, and Size Effects on Radial Growth in an Old-Growth Hemlock Forest. Forests, 11.