Individual Channel Capacity in a Communication System with Nonorthogonal Multiple Access

M. G. Bakulin1, T. B. K. Ben Rejeb1, V. B. Kreyndelin1, D. Yu. Pankratov1, A. E. Smirnov1
1Moscow Technical University of Communication and Computer Science, Moscow, Russia

Tóm tắt

Abstract—The purpose of this article is to analyze the capacity of a discrete-continuous communication channel (DC-channel) as applied to nonorthogonal multiple access (NOMA) systems. In this work, an expression is obtained for the individual mutual information of a DC-channel in communication systems with nonorthogonal access, which makes it possible to analyze the capacity of the DC-channel individually for subscribers of NOMA systems. Its effectiveness for analyzing group signals of NOMA systems is shown, examples of its use are given, and capacity characteristics for NOMA subscribers are obtained as well.

Từ khóa


Tài liệu tham khảo

R. G. Gallager, “A perspective on multiaccess channels,” IEEE Trans. Inf. Theory 31, 124 –142 (1985). R. G. Gallager, “An Inequality on the Capacity Region of Multiaccess Multipath Channels,” in R. E. Blahut, D. J. Costello, U. Maurer, T. Mittelholzer, (Eds) Communications and Cryptography. The Springer Int. Series in Engineering and Computer Science (Springer, Boston, 1994). J. E. Mazo, “Faster-than-Nyquist signaling,” The Bell System Tech. J. 54 (8), 1451–1462 (1975). J. Fan, S. Guo, X. Zhou, Y. Ren, G. Y. Li, and X. Chen, “Faster-than-Nyquist signaling: An Overview,” IEEE Access 5, 1925–1940 (2017). D. Hajela, “On faster than Nyquist signaling: Further estimations on the minimum distance,” SIAM J. Appl. Math. 52 (3), 900 –907 (1992). J. B. Anderson, F. Rusek, and V. Owall, “Faster-than-Nyquist signaling,” Proc. IEEE 101, 1817–1830 (2013). L. M. Fink, Discrete Communication Theory (Sovetskoe Radio, Moscow, 1970) [in Russian]. M. G. Bakulin, V. B. Kreindelin, and A. P. Shumov, “Problems and methods of increase in spectral efficiency of communication systems: orthogonal transfer,” Tsifrov. Obrab. Sign., No. 2, 22–33 (2014). M. G. Bakulin, V. B. Kreindelin, and A. P. Shumov, “Issues of increase in spectral efficiency of communication systems: not orthogonal transfer,” Tsifrov. Obrab. Sign., No. 4, 55–64 (2013). H. Sun, C. Dong, S. X. Ng, and L. Hanzo, “Five decades of hierarchical modulation and its benefits in relay-aided networking,” IEEE Access 3, 2891–2921 (2015). Md. J. Hossain, P. K. Vitthaladevuni, M. S. Alouini, V. K. Bhargava, and A. J. Goldsmith, “Adaptive hierarchical modulation for simultaneous voice and multiclass data transmission over fading channels,” IEEE Trans. Vehicular Technol. 55, 1181–1194 (2006). V. I. Zhuravlev and N. P. Trusevich, Methods of Modulation and Demodulation of Radio Signals in Systems of Transfer of Digital Messages (MTUSI, Moscow, 2005). T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., (John Wiley & Sons, 2006). S. Najeh and H. Besbes, “A simple superposition coding scheme for optimizing resource allocation in downlink OFDMA systems,” Wireless Pers Commun 59, 237–260 (2011). S. Vanka, S. Srinivasa, Z. Gong, P. Vizi, K. Stamatiou, and M. Haenggi, “Superposition coding strategies: Design and experimental evaluation,” IEEE Trans. Wireless Commun. 11, 2628–2639 (2012). H. Lee, S. Kim, and J. Lim, “Multiuser Superposition Transmission (MUST) for LTE–A systems,” in Proc. 2016 IEEE Int. Conf. on Communications (ICC), 2016 (IEEE, New, York, 2016), pp. 1–6. Islam S. M. Riazul, Z. Ming, and O. A. Dobre, “NOMA in 5G systems: exciting possibilities for enhancing spectral efficiency,” IEEE 5G Tech Focus 1, (2) (2017). Y. Wang, B. Ren, S. Sun, S. Kang, and X. Yue, “Analysis of non-orthogonal multiple access for, 5G,” China Commun., 13 (2), 52–66 (2016). W. Shin, M. Vaezi, B. Lee, D. J. Love, J. Lee, and H. V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55 (10), 176–183. M. G. Bakulin, V. B. Kreindelin, and A. P. Shumov, “Not orthogonal multiple access: the main directions and opportunities,” Tsifrov. Obrab. Sign., No. 4, 21–35 (2020). M. G. Bakulin, Rezheb T.B.K. Ben, V. B. Kreindelin, D. Yu. Pankratov, and A. E. Smirnov, “NOMA technology with code division in 3GPP: 5G or 6G,” T‑Comm: Telekomm. i Transport 16, 4–14 (2022). A. Benjebbour, K. Saito, A. Li, Y. Kishiyama, and T. Nakamura, “Non-orthogonal multiple access (NOMA): Concept, performance evaluation and experimental trials,” in 2015 Int. Conf. on Wireless Networks and Mobile Commun. (WINCOM), 2015 (WINCOM, 2015). M. Moher, “An iterative multiuser decoder for near-capacity communications,” IEEE Trans. Commun. 46, 870–880 (1998). Yu. B. Zubarev, Yu. K. Trofimov, A. M. Shloma, M. G. Bakulin, and V. B. Kreindelin, “New algorithms of forming and processing of signals in the systems of mobile communication,” Elektrosvyaz’, No. 3, 11 –13 (2004). C. Yan, A. Harada, A. Benjebbour, Y. Lan, A. Li, and H. Jiang, “Receiver design for downlink non-orthogonal multiple access (NOMA),” in Proc. 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, UK, 2015 (IEEE, Glasgow, 2015). M. G. Bakulin, Rezheb T.B.K. Ben, V. B. Kreindelin, and A. E. Smirnov, “Decrease in computing complexity of detecting of the signal in the MIMO systems,” Elektrosvyas’, No. 3, 22–27 (2021). M. G. Bakulin, V. B. Kreindelin, D. Yu. Pankratov, and A. G. Stepanova, “New approach to problems of MIMO-detecting and multiuser demodulation. Inf. Protsessy,” 21, 93–107 (2021). S. M. R. Islam, N. Avazov, O. A. Dobre, and K. Kwak, “Power-domain Non-Orthogonal Multiple Access (NOMA). 5G systems: potentials and challenges,” IEEE Commun. Surveys & Ttutorials 19 (2), 721–742 (2017). C. E. Shannon, “A mathematical theory of communication,” The Bell System Tech. J. 27 (3), 379–423 (1948). R. E. Blahut, Principles and Practice of Information Theory (Addison-Wesley, Reading, 1987). G. Ungerboeck, “Channel coding with multilevel phase signals,” IEEE Trans. Inf. Theory 28 (1), 55–67 (1982). S. X. Ng and L. Hanzo, “On the MIMO channel capacity of multidimensional signal sets,” IEEE Trans. Vehicular Technol. 55, 528–536 (2006). P. E. McIllree, “Channel capacity calculations for M-ary N-dimensional signal sets,” M.S. thesis, Sch. Electron. Eng., Univ. South Australia, Adelaide, Australia (1995). I. M. Sobol’, Monte Carlo Method (Nauka, Moscow, 1972) [in Russian]. G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, New York, 1995). E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun, No. 10, 585–595 (1999). J. G. Proakis, Digital Communications (McGraw-Hill, New York, 1989; Radio i Svyaz’, Moscow, 2000). L. A. Sena, Units of Physical Quantities and Their Dimension. Educational Reference Guide, 3rd Ed., (FizMatLit, Moscow, 1988). Y. Yuan, Z. Yuan, and L. Tian, “5G Non-orthogonal multiple access study in 3GPP,” IEEE Commun. Mag. 58 (7), 90–96 (2020). M. G. Bakulin, Rezheb T.B.K. Ben, V. B. Kreindelin, D. Yu. Pankratov, and A. E. Smirnov, “Technology NOMA with code division in 3GPP: 5G or 6G,” T‑Comm: Telekommun. i Transport 16, 4 –14 (2022). H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc. 2013 IEEE 24th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2013 (PIMRC-2013), pp. 332–336. S. A. Tutel’yan and E. M. Khorov, “Sharing of the OFDMA and NOMA methods in the ascending channel in Wi-Fi networks,” Inf. Protsessy, No. 4, 347–361 (2022). S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern division multiple access–a novel nonorthogonal multiple access for fifth-generation radio networks,” IEEE Trans. Vehicular Technol. 66 (4), 3185–3196 (2017). F. L. Luo and C. J. Zhang, Signal Processing for 5G: Algorithms and Implementations (Wiley-IEEE Press, 2016).