Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation

RSC Advances - Tập 9 Số 38 - Trang 21646-21652
He Zhiyi1,2,3,4, Yu Wang1,2,3,4, Xiaoli Dong1,2,3,4, Nan Zheng1,2,3,4, Hongchao Ma1,2,3,4, Xiufang Zhang1,2,3,4
1Dalian 116034
2[Dalian Polytechnic University]
3P. R. China
4School of Light Industry and Chemical Engineering, Dalian Polytechnic University, #1 Qinggongyuan, Dalian 116034, P. R. China

Tóm tắt

We have designed and manufactured In2S3 nanotubes containing sulfur vacancies as effective and stable photocatalysts for nitrogen fixation and ammonia production.

Từ khóa


Tài liệu tham khảo

Rosca, 2009, Chem. Rev., 109, 2209, 10.1021/cr8003696

Jia, 2014, Chem. Soc. Rev., 43, 547, 10.1039/C3CS60206K

Schwerdtfeger, 2003, Angew. Chem., Int. Ed., 42, 1183, 10.1002/anie.200390312

Zhang, 2018, J. Am. Chem. Soc., 140, 9434, 10.1021/jacs.8b02076

Hoffman, 2014, Chem. Rev., 114, 4041, 10.1021/cr400641x

Oshikiri, 2014, Angew. Chem., Int. Ed., 53, 9802, 10.1002/anie.201404748

Chen, 2018, Mater. Horiz., 5, 9, 10.1039/C7MH00557A

Martirez, 2017, J. Am. Chem. Soc., 139, 4390, 10.1021/jacs.6b12301

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Ong, 2014, Nanoscale, 6, 1946, 10.1039/c3nr04655a

Schrauzer, 1977, J. Am. Chem. Soc., 99, 7189, 10.1021/ja00464a015

Li, 2015, J. Am. Chem. Soc., 137, 6393, 10.1021/jacs.5b03105

Zhang, 2017, Adv. Mater., 29, 1606688, 10.1002/adma.201606688

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Creutz, 2014, J. Am. Chem. Soc., 136, 1105, 10.1021/ja4114962

Zhou, 2014, J. Am. Chem. Soc., 136, 9280, 10.1021/ja504802q

Fu, 2010, Appl. Catal., B, 95, 393, 10.1016/j.apcatb.2010.01.018

Huang, 2017, Adv. Funct. Mater., 27, 1702448, 10.1002/adfm.201702448

Wang, 2018, Appl. Catal., B, 233, 213, 10.1016/j.apcatb.2018.04.012

Wang, 2018, Appl. Catal., B, 186, 19, 10.1016/j.apcatb.2015.12.041

Zhang, 2019, J. Photochem. Photobiol., C, 38, 1, 10.1016/j.jphotochemrev.2018.11.001

Wu, 2018, Appl. Catal., B, 225, 8, 10.1016/j.apcatb.2017.11.040

Zhang, 2019, J. Photochem. Photobiol. C, 38, 1, 10.1016/j.jphotochemrev.2018.11.001

Hou, 2018, Adv. Energy Mater., 8, 1701114, 10.1002/aenm.201701114

Wu, 2018, Appl. Catal., B, 225, 8, 10.1016/j.apcatb.2017.11.040

Huang, 2013, Phys. Chem. Chem. Phys., 15, 553, 10.1039/C2CP41153A

Zhao, 2015, Chem. Commun., 51, 17309, 10.1039/C5CC07448G

Le, 2014, J. Phys. Chem. C, 118, 5346, 10.1021/jp411256g

Kanade, 2007, Int. J. Hydrogen Energy, 32, 4678, 10.1016/j.ijhydene.2007.07.040

Zhu, 2017, Appl. Catal., B, 217, 285, 10.1016/j.apcatb.2017.06.002

Yu, 2017, Acc. Chem. Res., 50, 293, 10.1021/acs.accounts.6b00480

Lai, 2012, Energy Environ. Sci., 5, 5604, 10.1039/C1EE02426D

Wang, 2017, Adv. Mater., 29, 1702724, 10.1002/adma.201702724

Lausund, 2017, Dalton Trans., 46, 16983, 10.1039/C7DT03518G

Zhou, 2012, Chem. Rev., 112, 673, 10.1021/cr300014x

Zhang, 2017, Joule, 1, 77, 10.1016/j.joule.2017.08.008

Volkringer, 2008, Inorg. Chem., 47, 11892, 10.1021/ic801624v

Wang, 2017, J. Am. Chem. Soc., 139, 17305, 10.1021/jacs.7b10733

Cho, 2008, J. Am. Chem. Soc., 130, 16943, 10.1021/ja8039794

Jiao, 2017, J. Am. Chem. Soc., 139, 7586, 10.1021/jacs.7b02290