Indium oxide, tin oxide and indium tin oxide nanostructure growth by vapor deposition
Tài liệu tham khảo
O’Dwyer, 2009, Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices, Nat. Nanotechnol, 4, 239, 10.1038/nnano.2008.418
Hieu, 2010, A facile thermal evaporation route for large-area synthesis of tin-oxide nanowires: characterizations ad their use for liquid petroleum gas sensor, Curr. Appl. Phys., 10, 636, 10.1016/j.cap.2009.08.008
Kar, 2010, Growth and properties of tin oxide nanowires and the effect of annealing conditions, Semicond. Sci. Technol., 25, 024012, 10.1088/0268-1242/25/2/024012
Vomiero, 2010, Insight into the formation mechanism of one-dimensional indium oxide wires, Cryst. Growth Des, 10, 140, 10.1021/cg900749j
Chen, 2010, Control of growth orientation and shape for epitaxially grown In2O3 nanowires on a-plane sapphire, Mater. Res. Bull., 45, 230, 10.1016/j.materresbull.2009.08.011
Qurashi, 2010, Catalyst supported growth of In2O3 nanostructures and their hydrogen gas sensing properties, Sens. Actuators, B., 147, 48, 10.1016/j.snb.2010.03.024
Kim, 2010, One-step fabrication and characterization of silica-sheathed ITO nanowires, J. Solid State Chem., 183, 2490, 10.1016/j.jssc.2010.08.012
Calestani, 2007, In-catalyzed growth of high purity indium oxide nanowires, Chem. Phys. Lett., 445, 251, 10.1016/j.cplett.2007.07.089
Wang, 2010, Indium tin oxide@carbon core-shell nanowire and jagged indium tin oxide nanowire, Nanoscale Res. Lett., 5, 1682, 10.1007/s11671-010-9695-x
Li, 2009, SnO2 nanowire arrays and electrical properties synthesized by fast heating a mixture of SnO2 and CNTs waste soot, Nanoscale Res. Lett., 4, 1434, 10.1007/s11671-009-9416-5
Wan, 2006, Vertically aligned tin-doped indium oxide nanowire arrays: epitaxial growth and electron field emission properties, Appl. Phys. Lett., 89, 123102, 10.1063/1.2345278
Lin, 2007, Preparation and electrical properties of electrospun tin-doped indium oxide nanowires, Nanotechnology, 18, 465301, 10.1088/0957-4484/18/46/465301
Singh, 2009, The temperature-controlled growth of In2O3 nanowires, nanotowers, and ultra-long layered nanorods, Nanotechnology, 20, 195605, 10.1088/0957-4484/20/19/195605
Jeong, 2010, The synthesis and growth mechanism of bamboo-like In2O3 nanowires, Nanotechnology, 21, 405601, 10.1088/0957-4484/21/40/405601
Wang, 2007, Synthesis, characterization, and optical properties of In2O3 semiconductor nanowires, Inorg. Chem., 46, 4778, 10.1021/ic700386z
Wang, 2011, Low-temperature vapor–solid growth and excellent field emission performance of highly oriented SnO nanorod arrays, Acta Mater., 59, 1291, 10.1016/j.actamat.2010.10.061
Shen, 2011, Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications, Adv. Mater., 23, 771, 10.1002/adma.201003474
Kar, 2011, Surface defect-related luminescence properties of SnO2 nanorods and nanoparticles, J. Phys. Chem. C, 115, 118, 10.1021/jp110313b
Yin, 2011, Vertically well-aligned In2O3 cone-like nanowire arrays grown on indium substrates, Eur. J. Inorg. Chem., 2011, 1570, 10.1002/ejic.201001071
Gao, 2011, UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires, Nanotechnology, 22, 195706, 10.1088/0957-4484/22/19/195706
Kovtyukhova, 2011, Conductive indium–tin oxide nanowire and nanotube arrays made by electrochemically assisted deposition in template membranes: switching between wire and tube growth modes by surface chemical modification of the template, Nanoscale, 3, 1541, 10.1039/c0nr00789g
Li, 2005, Large-area In2O3 ordered pore arrays and their photoluminescent properties, Appl. Phys. A, 81, 269, 10.1007/s00339-005-3261-x
Fung, 2011, Indium tin oxide nanorod electrodes for polymer photovoltaics, ACS Appl. Mater. Interfaces, 3, 522, 10.1021/am101097d
Maestre, 2010, Indium tin oxide micro- and nanostructures grown by thermal treatment of InN/SnO2, J. Phys. Chem. C, 114, 3411, 10.1021/jp911881s
Liu, 2010, Fine structure of ultraviolet photoluminescence of tin oxide nanowires, J. Phys. Chem. C, 114, 3407, 10.1021/jp9104294
Salehi, 2009, Growth of tin oxide nanotubes by aerial carbothermal evaporation, Appl. Phys. A, 97, 361, 10.1007/s00339-009-5216-0
Leung, 2004, Changing the shape of ZnO nanostructures by controlling Zn vapor release: from tetrapod to bone-like nanorods, Chem. Phys. Lett., 385, 155, 10.1016/j.cplett.2003.12.102
Cai, 2005, Growth of SiOx nanowire bunches cocatalyzed with Ga and Ni, J. Appl. Phys., 98, 074313, 10.1063/1.2081114
Dai, 2005, Growth of silica nanowire arrays by reaction of Si substrate with oxygen using Ga as catalyst, Phys. Lett. A, 335, 304, 10.1016/j.physleta.2004.12.029
Kohno, 2004, Formation of silicon/silicide/oxide nanochains and their properties studied by electron holography, Thin Solid Films, 464, 204, 10.1016/j.tsf.2004.06.052
Kar, 2005, Catalytic and non-catalytic growth of amorphous silica nanowires and their photoluminescence properties, Solid State Commun., 133, 151, 10.1016/j.ssc.2004.10.026
Gu, 2009, Germanium-catalyzed hierarchical Al2O3 and SiO2 nanowire bunch arrays, Nanoscale, 1, 347, 10.1039/b9nr00040b
Park, 2008, New approach to the growth of SiOx nanowire bunch using Au catalyst and SiNx film on Si substrate, Physica E, 40, 3170, 10.1016/j.physe.2008.05.008
Lettieri, 2008, Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires, J. Chem. Phys., 129, 244710, 10.1063/1.3041775
Walsh, 2011, Free energy of defect formation: thermodynamics of anion Frenkel pairs in indium oxide, Phys. Rev. B., 83, 224105, 10.1103/PhysRevB.83.224105
Zhong, 2008, Exceptionally long exciton photoluminescence lifetime in ZnO tetrapods, J. Phys. Chem. C, 112, 16286, 10.1021/jp804132u
Gargas, 2011, High quantum efficiency of band-edge emission from ZnO nanowires, Nano Lett., 11, 3792, 10.1021/nl201850k
Tarasako, 2009, Growth of ZnO films on R-plane sapphire substrate by atmospheric-pressure chemical vapor deposition using Zn powder and H2O as source materials, J. Vac. Sci. Technol. B., 27, 1646, 10.1116/1.3130157