Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lớp oxit dẫn điện trong suốt MgSnO3 không chứa indium: nghiên cứu về tính chất cấu trúc, quang học và điện cũng như phân tích hiệu suất quang điện
Applied Nanoscience - 2022
Tóm tắt
Trong công trình này, chúng tôi tập trung vào việc chuẩn bị một vật liệu oxit dẫn điện trong suốt (TCO) dễ chế tạo—Magnesium Ortho Stannate (MgSnO3—MTO) nhằm giảm thiểu những thiếu sót do các TCO thường gặp gây ra. Acetat cung cấp magnesi và clorua thiếc (II) đã được lựa chọn làm vật liệu khởi đầu. Trong nghiên cứu này, acetat magnesi được giữ cố định và clorua thiếc (II) được tăng theo các tỷ lệ sau: (MA:SC được lấy là 0,1 M:0,1 M-S1A, 0,1 M:0,2 M-S2A, 0,1 M:0,3 M-S3A, 0,1 M:0,4 M-S4A, 0,1 M:0,5 M-S5A). Bằng cách sử dụng kỹ thuật phun sương hơi (NSP), vật liệu cần thiết được phủ lên bề mặt kính và phim mỏng được chuẩn bị đã được tôi ở 300 °C trong ba giờ. Tất cả các mẫu oxit magnesi thiếc (MTO) đều thể hiện đỉnh phản xạ mạnh (205) của cấu trúc hình thoi của oxit magnesi thiếc và độ tinh thể tốt hơn đạt được ở các mẫu S4A và S5A. Hơn nữa, nghiên cứu này cũng phân tích ảnh hưởng của độ dày MTO lên các tính chất vật lý và quang điện tử khác nhau, bao gồm độ tinh thể, hình thái bề mặt, độ trong suốt quang học và điện trở suất. Các phim có độ dày khác nhau (thay đổi từ 310 đến 590 nm), độ tinh thể của phim cải thiện theo chiều dày từ mỏng đến mỏng hơn. Tỷ lệ truyền ánh sáng khả kiến trung bình vượt quá 80% và giá trị khoảng cách năng lượng là 3,65 eV cho mẫu S5A. Kết quả FESEM cho thấy kích thước hạt đã được cải thiện sau khi tôi trong khi tỷ lệ mol tăng lên. Các nghiên cứu về hiệu ứng Hall cho thấy giá trị điện trở suất giảm từ 10–2 đến 10–3 (Ω/cm), trong khi tỷ lệ mol của Clorua thiếc (SnCl2) tăng lên. Một so sánh về hiệu suất được thực hiện trên các tế bào quang năng nhạy màu (DSSC) được xây dựng sử dụng các tổ hợp khác nhau của MTO/MTO làm anode quang và electroda đối diện. Kết quả cho thấy DSSC được cấu thành từ MTO phủ platinum (S5A) làm electroda đối diện và MTO phủ TiO2 (S5A) làm anode quang thể hiện hiệu suất vượt trội 2,72% so với các tế bào khác.
Từ khóa
#phân tích hiệu suất quang điện #vật liệu oxit dẫn điện trong suốt #oxit magnesi thiếc #tính chất quang học #tính chất điệnTài liệu tham khảo
Aiswarya KM, Raguram T, Rajni KS (2019) Synthesis and characterisation of nickel cobalt sulfide nanoparticles by the solvothermal method for dye-sensitized solar cell applications. Polyhedron 176:114267. https://doi.org/10.1016/j.poly.2019.114267
Ali SM, Hussain ST, Muhammad J, Ashraf M, Farooq A, Imran SA, Bakar M (2013) Influence of magnesium doping on the structural and optical properties of tin (II) oxide thin films deposited by electron beam evaporation method. Mat Sci Semicon Proc 16:899–904. https://doi.org/10.1016/j.mssp.2013.01.017
Aouaj MA, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M (2009) Comparative study of ITO and FTO thin films grown by spray pyrolysis. Mater Res Bull 44:1458–1461. https://doi.org/10.1016/j.materresbull.2009.02.019
Ashok A, Vijayaraghavan SN, Unni GE, Nair SV, Shanmugam M (2018) On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells. Nanotechnology 29:175401. https://doi.org/10.1088/1361-6528/aaae45
Bak YR, Kim GO, Hwang MJ, Cho KK, Kim KW, Ryu S (2011) Fabrication and performance of nanoporous TiO2/SnO2 electrodes with a half hollow sphere structure for dye sensitized solar cells. J Sol Gel Sci Technol 58:518–523. https://doi.org/10.1007/s10971-011-2421-z
Bayraktaroglu B, Leedy K, Bedford R (2008) High temperature stability of post growth annealed transparent and conductive ZnO: Al films. Appl Phys Lett 93:022104. https://doi.org/10.1063/1.2959071
Beyer W, Hüpkes J, Stiebig H (2007) Transparent conducting oxide films for thin film silicon photovoltaics. Thin Sol Films 516:147–154. https://doi.org/10.1016/j.tsf.2007.08.110
Bwana NN (2009) Comparison of the performances of dye-sensitized solar cells based on different TiO2 electrode nanostructures. J Nanopart Res 11:1917. https://doi.org/10.1007/s11051-008-9545-2
Cavallo C, Pascasio DF, Latini A, Bonomo M, Dini D (2017) Nanostructured semiconductor materials for dye-sensitized solar cells. J Nanomater 5323164:1–31. https://doi.org/10.1155/2017/5323164
Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:638–640. https://doi.org/10.1143/JJAP.45.L638
Choi W, Termin A, Hoffmann MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photo reactivity and charge carrier recombination dynamics. J Phys Chem 98:13669. https://doi.org/10.1021/j100102a038
Deb SK (2008) Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol Energy Mater Sol Cells 92:245–258. https://doi.org/10.1016/j.solmat.2007.01.026
Ferhati H, Djeffal F (2020) Performance assessment of TCO/metal/TCO multilayer transparent electrodes: from design concept to optimization. J Comput Electron 19:815–824. https://doi.org/10.1007/s10825-020-01459-9
Fernandez S, Naranjo FB (2010) Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications. Sol Energy Mater Sol Cells 94:157e63. https://doi.org/10.1016/j.solmat.2009.08.012
Guo J, Fang J, Li DJ, Yao BL (2002) Influence of post-deposition annealing on the properties of transparent conductive nanocrystalline ZAO thin films prepared by RF magnetron sputtering with highly conductive ceramic target. Thin Sol Films 418:156–162. https://doi.org/10.1016/S0040-6090(02)00733-2
Hsu CY, Lin YC, Kao LM, Lin YC (2010) Effect of deposition parameters and annealing temperature on the structure and properties of Al-doped ZnO thin films. Mater Chem Phys 124:330–335. https://doi.org/10.1016/j.matchemphys.2010.06.042
Jeong SH, Boo JH (2004) Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering. Thin Solid Films 447:105–110. https://doi.org/10.1016/j.tsf.2003.09.031
Kawashima T, Matsui H, Tanabe N (2003) New transparent conductive films: FTO coated ITO. Thin Solid Films 445:241–244. https://doi.org/10.1016/S0040-6090(03)01169-6
Kennedy J, Murmu PP, Gupta PS, Carder DA, Chong SV, Leveneur J, Rubanov S (2014) Effects of annealing on the structural and optical properties of zinc sulfide thin films deposited by ion beam sputtering. Mat Sci Semicon Proc 26:561–566. https://doi.org/10.1016/j.mssp.2014.05.055
Kim KH, Park KC, Ma D (1997) Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J Appl Phys 81:7764. https://doi.org/10.1063/1.365556
Kim H, Kushto GP, Arnold CB, Kafafi ZH, Piqué A (2004) Laser processing of nanocrystalline TiO2 films for dye-sensitized solar cells. Appl Phys Lett 85:464–466. https://doi.org/10.1063/1.1772870
Kim YK, Kang HJ, Jang YW, Lee SB, Lee SM, Jung KS, Lee JK, Kim MR (2008) Synthesis, characterization, and photovoltaic properties of soluble TiOPc derivatives. Int J Mol Sci 9:2745–2756. https://doi.org/10.3390/ijms9122745
Kiruthiga G, Chinnappanadar S (2014) Structural, optical, electrical and hall effect studies of spray pyrolysised MgSnO3 thin films. Int J ChemTech Res 6(3):1942–1944
Kiruthiga G, Raguram T, Rajni KS, Selvakumar P, Nandhakumar E (2021) DSSCs: a facile and low-cost MgSnO3—based transparent conductive oxides via nebulized spray pyrolysis technique. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-021-06754-0
Kiruthiga Prabhu G, Raguram T, Rajni KS (2019) Annealing effect of magnesium tin oxide thin films prepared by nebulizer spray pyrolysis technique for dssc applications. IOP Conf Ser Mater Sci Eng 577:012093. https://doi.org/10.1088/1757-899X/577/1/012093
Kulkarni AK, Schulz KH, Lim TS, Khan M (1999) Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques. Thin Solid Films 345:273–277. https://doi.org/10.1016/S0040-6090(98)01430-8
Kumar R, Umar A, Kumar G, Nalwa HS, Kumar A, Akhtar MS (2017) Zinc oxide nanostructure-based dye-sensitized solar cells. J Mater Sci 52:4743–4795. https://doi.org/10.1007/s10853-016-0668-z
Kumar NS, Arulraj A, Nandhakumar E, Ganapathy M, Potheher IVV (2018) Green mediated synthesis of plasmonic nanoparticle (Ag) for antireflection coating in bare mono silicon solar cell. J Mater Sci Mater Electron 29:12744–12753. https://doi.org/10.1007/s10854-018-9392-6
Kuo C-C, Liu C-C, He S-C, Chang J-T, He J-L (2011) The influences of thickness on the optical and electrical properties of dual-ion-beam sputtering-deposited molybdenum-doped zinc oxide layer. J Nanomater 140697:1–5. https://doi.org/10.1155/2011/140697
Kurian S, Amrita C, Raguram T, Rajni KS (2019) Preparation and characterisation of PVA + TiO2 nanofiber by electrospinning technique. IOP Conf Ser Mater Sci Eng 577:012077. https://doi.org/10.1088/1757-899X/577/1/012077
Lee KM, Suryanarayanan V, Ho KC (2006) The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells. Sol Energy Mater Sol Cells 90:2398–2404. https://doi.org/10.1016/j.solmat.2006.03.034
Lee JH, Park NG, Shin YJ (2011) Nano-grain SnO2 electrodes for high conversion efficiency SnO2–DSSC. Sol Energy Mater Sol Cells 95:179–183. https://doi.org/10.1016/j.solmat.2010.04.027
Li ZJ, Hou B, Xu Y, Wu D, Sun YH (2005) Studies of Fe-doped SiO2/TiO2 composite nanoparticles prepared by sol–gel-hydrothermal method. J Mater Sci 40:3939–3943. https://doi.org/10.1007/s10853-005-0521-2
Nasr B, Dasgupta S, Wang D, Mechau N, Kruk R, Hahn H (2010) Electrical resistivity of nano crystalline Al-doped zinc oxide films as a function of Al content and the degree of its segregation at the grain boundaries. J Appl Phys 108:103721-1–103726. https://doi.org/10.1063/1.3511346
Oshima M, Takemoto Y, Yoshino K (2009) Optical and electrical characterization of FTO films grown by spray pyrolysis method. Phys Status Solidi C 6:1124–1126. https://doi.org/10.1002/pssc.200881171
Pitchaiya S, Eswaramoorthy N, Natarajan M, Santhanam A, Ramakrishnan VM, Asokan V, Palanichamy P, Palanisamy B, Kalimuthu A, Velauthapillai D (2020) Interfacing green synthesized flake like-ZnO with TiO2 for bilayer electron extraction in perovskite solar cells. New J Chem 44:8422–8433. https://doi.org/10.1039/D0NJ01559H
Pliskin WA, Zanin SJ (1970) Handbook of thin film technology. McGraw-Hill Publications, pp 10–11
Priyadharsini CI, Mathiyalagan S, Annamalai P, Aroulmoji V (2017) Effect of Mg doping on structural and optical properties of SnO2 nanoparticles by chemical co-precipitation method. Int J Adv Sci Eng 3:428–434
Pu XD, Shen WZ, Zhang ZQ, Ogawa H, Guo QX (2006) Growth and depth dependence of visible luminescence in wurtzite in nepilayers. Appl Phys Lett 88:151904. https://doi.org/10.1063/1.2193059
Punitha K, Sivakumar R, Sanjeeviraja C (2012) Structural and surface morphological studies of magnesium tin oxide thin films. Energy Proc 15:312–317. https://doi.org/10.1016/j.egypro.2012.02.037
Qiao Q, Beck J, Lumpkin R, Pretko J, McleskeyJr JT (2006) A comparison of fluorine tin oxide and indium tin oxide as the transparent electrode for P3OT/TiO2 solar cells. Sol Energy Mater Sol Cells 9090:034–1040. https://doi.org/10.1016/j.solmat.2005.05.020
Qureshi M, Chetia TR, Ansari MS, Soni SS (2015) Enhanced photovoltaic performance of meso-porous SnO2 based solar cells utilizing 2D MgO nanosheets sensitized by a metal-free carbazole derivative. J Mater Chem A 3:4291–4300. https://doi.org/10.1039/C4TA05877A
Raguram T, Rajni KS (2020) Characterization of TiO2 photoanodes and natural dyes (Allamanda Blanchetti and Allamanda Cathartica) extract as sensitizers for dye-sensitized solar cell applications. J Sol Gel Sci Technol 93:202–213. https://doi.org/10.1007/s10971-019-05180-3
Ramasamy E, Lee J (2010) Ordered mesoporous SnO2—based photoanodes for high-performance dye-sensitized solar cells. J Phys Chem c 114:22032–22037. https://doi.org/10.1021/jp1074797
Sakhta ARAA (2017) Morphological and optical properties of pure and mg doped tin oxide thin films prepared by spray pyrolysis method. Am J Nano Sci 3:19–23. https://doi.org/10.11648/j.ajn.20170302.11
Shang G, Wu J, Huang M, Lin J, Lan Z, Huang Y, Fan L (2012) Facile synthesis of mesoporous tin oxide spheres and their applications in dye-sensitized solar cells. J Phys Chem C 116:20140–20145. https://doi.org/10.1021/jp304185q
Shin SW, Kim IY, Jeon KS, Heo JY, Heo GS, Patil PS, Kim JH, Lee JY (2013) Wide band gap characteristic of quaternary and flexible Mg and Ga co-doped ZnO transparent conductive thin films. J Asian Ceram Soc 3:262–266. https://doi.org/10.1016/j.jascer.2013.06.003
Sima C, Grigoriu C, Antohe S (2010) Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films 519:595–597. https://doi.org/10.1016/j.tsf.2010.07.002
Tricoli A, Nasiri N, Chen H, Wallerand AS, Righettoni M (2016) Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Sol Energy 136:553–559. https://doi.org/10.1016/j.solener.2016.07.024
Vittal R, Ho KC (2017) Zinc oxide based dye-sensitized solar cells: a review. Renew Sustain Energy Rev 70:920–935. https://doi.org/10.1016/j.rser.2016.11.273
Wang C, Bahnemann DW, Dohrmann JK (2000) A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem Commun 16:1539–1540. https://doi.org/10.1039/B002988M
Wang ZA, Chu JB, Zhu HB, Sun Z, Chen YW, Huang SM (2009) Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications. Solid State Electron 53:1149–1153. https://doi.org/10.1016/j.sse.2009.07.006
Wu M, Zheng H, Li X, Yu S (2020) Highly transparent low resistance ATO/AgNWs/ATO flexible transparent conductive thin films. Ceram Int 46:4344–4350. https://doi.org/10.1016/j.ceramint.2019.10.157
Yoo B, Kim K, Lee SH, Kim WM, Park NG (2008) ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells. Sol Energy Mater Sol Cells 92:873–877. https://doi.org/10.1016/j.solmat.2008.02.013
Zhang XB, Pei ZL, Gong J, Sun C (2007) Investigation on the electrical properties and in homogeneous distribution of ZnO: Al thin films prepared by dc magnetron sputtering at low deposition temperature. J Appl Phys 101:014910. https://doi.org/10.1063/1.2407265
Zumeta I, Ayllon JA, Gonzalez B, Domenech X, Vigil E (2009) TiO2 films obtained by microwave-activated chemical-bath deposition used to improve TiO2-conducting glass contact. Sol Energy Mater Sol Cells 93:1728–1732. https://doi.org/10.1016/j.solmat.2009.05.022
