Independent Rainbow Domination of Graphs

Zehui Shao1,2, Zepeng Li3, Aljoša Peperko4,5, Jiafu Wan6, Janez Žerovnik4,5
1School of Computer Science and Educational Software, Guangzhou University, Guangzhou, China
2School of Information Science and Engineering, Chengdu University, Chengdu, China
3School of Electronic Engineering and Computer Science, Peking University, Beijing, China
4FME, University of Ljubljana, Ljubljana, Slovenia
5Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia
6School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China

Tóm tắt

Given a positive integer t and a graph F, the goal is to assign a subset of the color set $$\{1,2,\ldots ,t\}$$ to every vertex of F such that every vertex with the empty set assigned has all t colors in its neighborhood. Such an assignment is called the t-rainbow dominating function ( $$t\mathrm{RDF}$$ ) of the graph F. A $$t\mathrm{RDF}$$ is independent ( $$It\mathrm{RDF}$$ ) if vertices assigned with non-empty sets are pairwise non-adjacent. The weight of a $$t\mathrm{RDF}$$ g of a graph F is the value $$w(g) =\sum _{v \in V(F)}|g(v)|$$ . The independent t-rainbow domination number $$i_{rt}(F)$$ is the minimum weight over all $$It\mathrm{RDF}$$ s of F. In this article, it is proved that the independent t-rainbow domination problem is NP-complete even if the input graph is restricted to a bipartite graph or a planar graph, and the results of the study provide some bounds for the independent t-rainbow domination number of any graph for a positive integer t. Moreover, the exact values and bounds of the independent t-rainbow domination numbers of some Petersen graphs and torus graphs are given.

Tài liệu tham khảo

Brešar, B., Henning, M.A., Rall, D.F.: Paired-domination of Cartesian products of graphs and rainbow domination. Electron. Notes Discrete Math. 22, 233–237 (2005) Brešar, B., Henning, M.A., Rall, D.F.: Rainbow domination in graphs. Taiwan. J. Math. 12(1), 213–225 (2008) Brešar, B., Šumenjak, T.K.: On the 2-rainbow domination in graphs. Discrete Appl. Math. 155(1), 2394–2400 (2007) Chang, G.J., Wu, J., Zhu, X.: Rainbow domination on trees. Discrete Appl. Math. 158, 8–12 (2010) Chen, W., Lu, Z., Wu, W.: Dominating problems in swapped networks. Inf. Sci. 269, 286–299 (2014) Ebrahimi, B.J., Jahanbakht, N., Mahmoodianc, E.S.: Vertex domination of generalized Petersen graphs. Discrete Math. 309, 4355–4361 (2009) Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co, San Francisco (1979) Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and recent results. Discrete Math. 313(7), 839–854 (2013) Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998) Kelleher, L.L., Cozzens, M.B.: Dominating sets in social network graphs. Math. Soc. Sci. 16(3), 267–279 (1988) Klavžar, S., Žerovnik, J.: Algebraic approach to fasciagraphs and rotagraphs. Discrete Appl. Math. 68, 93–100 (1996) Šumenjak, T.K., Rall, D.F., Tepeh, A.: Rainbow domination in the lexicographic product of graphs. arXiv:1210.0514v2. 13 Mar 2013 Ore, O.: Theory of Graphs. American Mathematical Society, Providence (1967) Pang, C., Zhang, R., Zhang, Q., Wang, J.: Dominating sets in directed graphs. Inf. Sci. 180(19), 3647–3652 (2010) Pavlič, P., Žerovnik, J.: Roman domination number of the Cartesian products of paths and cycles. Electron. J. Comb. 16, P19 (2012) Pavlič, P., Žerovnik, J.: A note on the domination number of the cartesian products of paths and cycles. Kragujev. J. Math. 37, 275–285 (2013) Pavlič, P., Žerovnik, J.: Formulas for various domination numbers of products of paths and cycles. Ars combinatoria, accepted for publication. preprint 1180 (2012). http://preprinti.imfm.si Shao, Z., Zhu, E., Lang, F.: On the domination number of Cartesian product of two directed cycles. J. Appl. Math. (2013), Article ID 619695 Shao, Z., Liang, M., Yin, C., Xu, X., Pavlič, P., Žerovnik, J.: On rainbow domination numbers of graphs. Inf. Sci. 254, 225–234 (2014) Steimle, A., Staton, W.: The isomorphism classes of the generalized Petersen graphs. Discrete Math. 309, 231–237 (2009) Tong, C., Lin, X., Yang, Y., Luo, M.: 2-rainbow domination of generalized Petersen graphs \(P(n, 2)\). Discrete Appl. Math. 157, 1932–1937 (2009) Tsai, Y., Lin, Y., Hsu, F.R.: Efficient algorithms for the minimum connected domination on trapezoid graphs. Inf. Sci. 177(12), 2405–2417 (2007) Watkins, M.: A theorem on Tait colorings with an application to the generalized Petersen graph. J. Comb. Theory 6, 152–164 (1969) Wu, L., Shan, E., Liu, Z.: On the \(k\)-tuple domination of generalized de Brujin and Kautz digraphs. Inf. Sci. 180(22), 4430–4435 (2010) Xu, G.: 2-rainbow domination in generalized Petersen graphs \(P(n, 3)\). Discrete Appl. Math. 157, 2570–2573 (2009) Yen, W.: The bottleneck independent domination on the classes of bipartite graphs and block graphs. Inf. Sci. 157, 199–215 (2003) Žerovnik, J.: Deriving formulas for domination numbers of fasciagraphs and rotagraphs. Lect. Notes Comput. Sci. 1684, 559–568 (1999)