Independent Double Roman Domination in Graphs
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdollahzadeh Ahangar, H., Amjadi, J., Chellali, M., Nazari-Moghaddam, S., Sheikholeslami, S.M.: Trees with double Roman domination number twice the domination number plus two. Iran. J. Sci. Technol. Trans. A Sci. 43, 1081–1088 (2019)
Abdollahzadeh Ahangar, H., Chellali, M., Sheikholeslami, S.M.: On the double Roman domination in graphs. Discrete Appl. Math. 103, 245–258 (2017)
Amjadi, J., Nazari-Moghaddam, S., Sheikholeslami, S.M., Volkmann, L.: An upper bound on the double Roman domination number. J. Comb. Optim. 36, 81–89 (2018)
Beeler, R.A., Haynes, T.W., Hedetniemi, S.T.: Double Roman domination. Discrete Appl. Math. 211, 23–29 (2016)
Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for Roman domination. SIAM J. Discrete Math. 23, 1575–1586 (2009)
Chellali, M., Jafari Rad, N.: A note on the independent Roman domination in unicyclic graphs. Opuscula Math. 32, 715–718 (2012)
Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domination in graphs. Discrete Math. 278, 11–22 (2004)
Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman domination number of a graph. Discrete Math. 309, 3447–3451 (2009)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)
Goddard, W., Henning, M.A.: Independent domination in graphs: a survey and recent results. Discrete Math. 313, 839–854 (2013)
Mobaraky, B.P., Sheikholeslami, S.M.: Bounds on Roman domination numbers of graphs. Mat. Vesnik 60, 247–253 (2008)
ReVelle, C.S., Rosing, K.E.: Defendens imperium romanum: a classical problem in military strategy. Am. Math. Monthly 107, 585–594 (2000)
Targhi, M.A., Jafari Rad, N., Moradi, M.S.: Properties of independent Roman domination in graphs. Aust. J. Combin. 52, 11–18 (2012)
Volkmann, L.: The double Roman domatic number of a graph. J. Combin. Math. Combin. Comput. 104, 205–215 (2018)
Volkmann, L.: Double Roman domination and domatic numbers of graphs. Commun. Comb. Optim. 3, 71–77 (2018)