Indentation Determination of the Fracture Toughness of Steels at Various Temperatures

Pleiades Publishing Ltd - Tập 2020 - Trang 813-816 - 2020
A. A. Baron1
1Volgograd State Technical University, Volgograd, Russia

Tóm tắt

The state of the art in the field of estimating the fracture toughness of ductile steels using the parameters of indentation by a spherical indenter is considered. Relations to calculate the specific indentation energy of a sphere using the diameter of a recovered impression are received. A method is developed to estimate the critical stress intensity factor for the plane strain state of pipeline and vessel steels using the parameters of indentation by a spherical indenter performed on a standard stationary Brinell hardness tester.

Tài liệu tham khảo

B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” Mater. Sci., No. 10, 1049–1081 (1975). F. M. Haggag, T. S. Byun, J. H. Hong, et al., “Indentation-energy-to-fracture (IEF) parameter for characterization of DBTT in carbon steels using nondestructive automated ball indentation (ABI) technique,” Scr. Mater. 38 (4), 645–651 (1998). T. S. Byun, J. W. Kim, and J. H. Hong, “A theoretical model for determination of fracture toughness of reactor pressure vessel steels in the transition region from automated ball indentation test,” Nucl. Mater. 252, 187–194 (1998). J.-S. Lee, J.-H. Jang, B.-W. Lee, et al., “An instrumented indentation technique for estimating fracture toughness of ductile materials: a critical indentation energy model based on continuum damage mechanics,” Acta Mater. 54 (4), 1101–1109 (2006). L. M. Kachalov, “About time of creep-induced fracture,” Izv. Akad. Nauk SSSR, Ser. OTN, No. 8, 26–31 (1958). J. Lemaitre, “A continuous damage mechanics model for ductile fracture,” Eng. Mater. Technol. 107, 83–89 (1985). https://doi.org/10.1116/1.3226775 M. B. Bakirov, E. M. Morozov, I. A. Belunik, and E. S. Krutko, “Determination of fracture toughness of 15Kh2NMFA vessel steel by depth-sensing indentation,” Inorgan. Mater. 51 (15), 1468–1473 (2015). https://doi.org/10.1134/S0020168515150030 A. Ya. Krasovskii and V. N. Krasiko, Fracture Toughness of the Steels Used in Production of Main Pipelines (Naukova Dumka, Kiev, 1990). M. S. Drozd, M. M. Matlin, and Yu. I. Sidyakin, Engineering Calculations of Elastic Plastic Contact Deformation (Mashinostroenie, Moscow, 1986). E. O. Orowan, “Fundamentals of brittle behavior in metals,” in Proceedings of Symposium on Fatigue and Fracture of Metals (Wiley, New York, 1952), pp. 139–167. G. R. Irwin, “Analysis of stress and strain near the end of a crack traversing a plate,” Appl. Mech. 24 (3), 361–364 (1957).