Increasing entomopathogenic nematode biodiversity reduces efficacy against the Caribbean fruit fly Anastrepha suspensa: interaction with the parasitoid Diachasmimorpha longicaudata
Tóm tắt
Entomopathogenic nematode (EPN) species richness merits studies towards making rational decisions for effective management of Caribfly, Anastrepha suspensa (Loew) in southern Florida. Competition for Caribfly and efficacies of EPN biodiversity were examined under laboratory conditions. Similar EPN species treatments to Caribfly-infested fruits, periodically obtained from the ground in groves which were also infested by the parasitoid Diachasmimorpha longicaudata Ashmead (Braconidae), were studied in a series of field trials. Treatments with individual EPN species and their mixtures caused similar mortalities of Caribfly larvae, though the various EPN species competed for larvae in multiple-species treatments. Laboratory trials showed that mortalities of EPN-treated Caribfly pupae were mostly inversely related to EPN diversity. In the field, population densities of emerging adult Caribfly increased with increasing number of EPN species combined in treatments. Thus, single-EPN species treatments proved to be more effective for the management of fruit-to-soil stages of Caribfly. Relative to controls, the proportions of surviving adult Caribfly observed in EPN treatments with Heterorhabditis bacteriophora (exotic in Florida), Steinernema feltiae (exotic EPN) and Heterorhabditis indica (the endemic species) in field plots were 22.5 ± 6, 45 ± 13 and 47 ± 13%, respectively. Number of emerging D. longicaudata in each of EPN species treatments was similar to that observed in control, suggesting that none of the EPN species significantly affected the emergence of D. longicaudata, a parasitoid of Caribfly. Heterorhabditis bacteriophora will be more promising, with insignificant side effects on D. longicaudata in Caribfly-integrated pest management.
Tài liệu tham khảo
Atwa AA, Hegazi EM, Khafagi WE, Abd El-Aziz GM (2013) Interaction of the koinobiont parasitoid Microplitis rufiventris of the cotton leafworm, Spodoptera littoralis, with two entomopathogenic rhabditids, Heterorhabditis bacteriophora and Steinernema carpocapsae. J Insect Sci 13(84):1–14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841070/pdf/031.013.8401.pdf
Bézier A, Annaheim M, Herbinière J, Wetterwald C, Gyapay G, Bernard-Samain S, Wincker P, Roditi I, Heller M, Belghazi M, Pfister-Wilhem R, Periquet G, Dupuy C, Huguet E, Volkoff AN, Lanzrein B, Drezen JM (2009) Polydnaviruses of braconid wasps derive from an ancestral nudivirus. Science 323(5916):926–930. https://doi.org/10.1126/science.1166788
Campos-Herrera R, El-Borai FE, Stuart RJ, Graham JH, Duncan LW (2011a) Entomopathogenic nematodes, phoretic Paenibacillus spp., and the use of real time quantitative PCR to explore soil food webs in Florida citrus groves. J Invertebr Pathol 108:30–39
Campos-Herrera R, Johnson EG, EL-Borai FE, Stuart RJ, Graham JH, Duncan LW (2011b) Long-term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real-time PCR assays. Ann Appl Biol 158:55–68. https://doi.org/10.1111/j.1744-7348.2010.00433.x
Campos-Herrera R, Pathak E, El-Borai FE, Gutiérrez C, Rodríguez-Martín JA, Stuart RJ, Graham JH, Duncan LW (2013) Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biol Biochem 66:163–174. https://doi.org/10.1016/j.soilbio.2013.07.011
Campos-Herrera R, El-Borai FE, Rodríguez MJA, Duncan LW (2016) Entomopathogenic nematode food web assemblages in Florida natural areas. Soil Biol Biochem 93:105–114. https://doi.org/10.1016/j.soilbio.2015.10.022
Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992
Chen EH, Hou QL, Wei DD, Dou W, Liu Z, Yang PJ, Smagghe G, Wang JJ (2017) Tyrosine hydroxylase coordinates larval-pupal tanning and immunity in oriental fruit fly (Bactrocera dorsalis). Pest Manag Sci. https://doi.org/10.1002/ps.4738
Choo HY, Koppenhofer AM, Kaya HK (1996) Combination of two entomopathogenic nematode species for suppression of an insect pest. J Econ Entomol 89(1):97–103
Demir S, Karagoz M, Hazir S, Kaya HK (2015) Evaluation of entomopathogenic nematodes and their combined application against Curculio elephas and Polyphylla fullo larvae. J Pest Sci 88(1):163–170. https://doi.org/10.1007/s10340-014-0571-9
Dolinski C (2015) Entomopathogenic nematodes against the main guava insect pests. Biocontrol 61(3):325–335. https://doi.org/10.1007/s10526-015-9695-y
Dolinski C, Choo HY, Duncan LW (2012) Grower acceptance of entomopathogenic nematodes: case studies on three continents. J Nematol 44(2):226–235
Duncan LW, Dunn DC, Bague G, Nguyen K (2003) Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. J Nematol 35(2):187–193
El-Borai FE, Campos-Herrera R, Stuart RJ, Duncan LW (2011) Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi. J Invertebr Pathol 106(3):347–356. https://doi.org/10.1016/j.jip.2010.12.001
El-Borai FE, Nabil K, Duncan LW (2016) Consilience in entomopathogenic nematode responses to water potential and their geospatial patterns in Florida. Front Microbiol 7:1–12. https://doi.org/10.3389/fmicb.2016.00356
Finke DL, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Conserv 143:2260–2269
Gotelli NJ, Ellison AM (2013) A primer of ecological statistics, 2nd edn. Sinauer Associates, Inc. Publishers, Sunderland, pp 289–348
Grewal PS, Ehlers R-U, Shapiro-Ilan DI (2005) Nematodes as biological control agents. CABI, Wallingford, p 505
Griffin CT (2015) Behaviour and population dynamics of entomopathogenic nematodes following application. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests, sustainability in plant and crop protection 1. Springer, Berlin, pp 57–95. https://doi.org/10.1007/978-3-319-18266-7_3
Griffin JN, Jenkins SR, Gamfeldt L, Jones D, Hawkins SJ, Thompson RC (2009) Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118:1335–1342
Gulcu B, Hazir S, Kaya HK (2012) Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J Invertebr Pathol 110:326–333. https://doi.org/10.1016/j.jip.2012.03.014
Hatting J, Stock SP, Hazir S (2009) Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. J Invertebr Pathol 102(2):120–128. https://doi.org/10.1016/j.jip.2009.07.003
Hearne R, Lettice EP, Jones PW (2017) Interspecific and intraspecific competitions in the potato cyst nematodes Globodera pallida and G. rostochiensis. Nematology 19:463–475. https://doi.org/10.1163/15685411-00003061
Heve WK, El-Borai FE, Carrillo D, Duncan LW (2017) Biological control potential of entomopathogenic nematodes for management of Caribbean fruit fly, Anastrepha suspensa Loew (Tephritidae). Pest Manag Sci 73(6):1220–1228. https://doi.org/10.1002/ps.4447
Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35
Hoy MA (2013) An introduction and principles of insect molecular genetics, 3rd edn. Academic Press, Elsevier, Cambridge, Amsterdam, p 808. https://doi.org/10.1016/8978-0-12-415874-0.00005-6
Jabbour R, Crowder DW, Aultman EA, Snyder WE (2011) Entomopathogen biodiversity increases host mortality. Biol Control 59(2):277–283
Kaplan F, Alborn HT, von Reuss SH, Ajredini R, Ali JG, Akyazi F, Stelinski LL, Edison AS, Schroeder FC, Teal PE (2012) Interspecific nematode signals regulate dispersal behavior. PLoS One 7(6):e38735. https://doi.org/10.1371/journal.pone.0038735
Kapranas A, Malone B, Quinn S, Louis MCN, Williams CD, O’Tuama P, Peters A, Griffin CT (2017) Efficacy of entomopathogenic nematodes for control of large pine weevil, Hylobius abietis: effects of soil type, pest density and spatial distribution. J Pest Sci 90(2):495–505. https://doi.org/10.1007/s10340-016-0823-y
Koppenhofer AM, Kaya HK, Shanmugam S, Wood GL (1995) Interspecific competition between steinernematid nematodes within an insect host. J Invertebr Pathol 66(2):99–103. https://doi.org/10.1006/jipa.1995.1070
Laznik Ž, Tóth T, Lakatos T, Vidrih M, Trdan S (2010) The activity of three new strains of Steinernema feltiae against adults of Sitophilus oryzae under laboratory conditions. J Food Agric Environ 8(1):150–154. http://www.bf.uni-lj.si/fileadmin/groups/2690/JFAE__S._oryzae___EPN__2009_.pdf
Li Y (2015) Calcareous soils in Miami-Dade County, Florida. EDIS (October review of 2001), SL183. http://edis.ifas.ufl.edu; https://edis.ifas.ufl.edu/pdffiles/TR/TR00400.pdf
Lortkipanidze MA, Gorgadze OA, Kajaia GS, Gratiashvili NG, Kuchava MA (2016) Foraging behavior and virulence of some entomopathogenic nematodes. Ann Agrar Sci 14:99–103. https://doi.org/10.1016/j.aasci.2016.05.009
Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR (2017) Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog 13(4):e1006302. https://doi.org/10.1371/journal.ppat.1006302
Ma J, Chen S, Moens M, De Clercq P, Li X, Han R (2013) Characterization in biological traits of entomopathogenic nematodes isolated from North China. J Invertebr Pathol 114:268–276. https://doi.org/10.1016/j.jip.2013.08.012
Meirelles RN, Redaelli LR, Ourique CB (2013) Comparative Biology of Diachasmimorpha longicaudata (Hymenoptera: braconidae) reared on Anastrepha fraterculus and Ceratitis capitata (Diptera: Tephritidae). Fla Entomol 96(2):412–418
Minas RS, Souza RM, Dolinski C, Carvalho RS, Burla RS (2016) Potential of entomopathogenic nematodes (Rhabditida: Heterorhabditidae) to control Mediterranean fruit fly (Diptera: Tephritidae) soil stages. Nematoda 3:e02016. https://doi.org/10.4322/nematoda.02016
Neumann G, Shields EJ (2008) Multiple-species natural enemy approach for biological control of Alfalfa snout beetle (Coleoptera: Curculionidae) using entomopathogenic nematodes. J Econ Entomol 101(5):1533–1539
O’Callaghan KM, Zenner ANRL, Hartley CJ, Griffin CT (2014) Interference competition in entomopathogenic nematodes: male Steinernema kill members of their own and other species. Int J Parasit 44:1009–1017. https://doi.org/10.1016/j.ijpara.2014.07.004
Půža V, Mráček Z (2009) Mixed infection of Galleria mellonella with two entomopathogenic nematode (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. J Invertebr Pathol 102(1):40–43. https://doi.org/10.1016/j.jip.2009.06.005
Qin Y, Paini DR, Wang C, Fang Y, Li Z (2015) Global establishment risk of economically important fruit fly species (Tephritidae). PLoS One 10(1):e0116424. https://doi.org/10.1371/journal.pone.0116424
Ramirez RA, Snyder WE (2009) Scared sick? Predator–pathogen facilitation enhances exploitation of a shared resource. Ecology 90:2832–2839
Schliserman P, Aluja M, Rull J, Ovrusk SM (2016) Temporal diversity and abundance patterns of parasitoids of fruit-infesting Tephritidae (Diptera) in the Argentinean Yungas: implications for biological control. Environ Entomol 45(5):1184–1198. https://doi.org/10.1093/ee/nvw077
Shakeela V, Hussaini SS (2009) Influence of soil type on infectivity and persistence of indigenous isolates of entomopathogenic nematodes, Heterorhabditis indica Poinar et al. (Nematoda: Heterorhabditidae) and Steinernema carpocapsae Weiser (Nematoda: Steinernematidae). J Biol Control 23(1):63–72. http://www.informaticsjournals.com/index.php/jbc/article/view/3618
Shapiro-Ilan DI, Gaugler R (2002) Production technology for entomopathogenic nematodes and their bacterial symbionts. J Ind Microbiol Biotech 28:137–146
Shapiro-Ilan DI, Blackburn D, Duncan LW, El-Borai FE, Koppenhöfer H, Tailliez P, Adams BJ (2014) Characterisation of biocontrol traits in Heterorhabditis floridensis: a species with broad temperature tolerance. J Nematol 46(4):336–345
Shapiro-Ilan DI, Hazir S, Lete L (2015) Viability and virulence of entomopathogenic nematodes exposed to ultraviolet radiation. J Nematol 47(3):184–189
Sicard M, Ramone H, Le Brun N, Pages S, Moulia C (2005) Specialization of the entomopathogenic nematode Steinernema scapterisci with its mutualistic Xenorhabdus symbiont. Naturwissenschaften 92(10):472–476. https://doi.org/10.1007/s00114-005-0021-x
Simmonds TJ, Carrillo D, Burke GR (2016) Characterization of a venom gland-associated rhabdovirus in the parasitoid wasp Diachasmimorpha longicaudata. J Insect Physiol 91–92:48–55. https://doi.org/10.1016/j.jinsphys.2016.06.009
Stock SP, Hunt DJ (2005) Morphology and systematic of nematodes used in biocontrol. In: Grewal PS, Ehlers R-U, Shapiro-Ilan DI (eds) Nematodes as biocontrol agents. CABI, Wallingford, pp 3–43
Suckling DM, Kean JM, Stringer LD, Cáceres-Barrios C, Hendrichs J, Reyes-Flores J, Dominiak BC (2016) Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Manag Sci 72(3):456–465. https://doi.org/10.1002/ps.3905
Thompson CR (2014) A parasitoid wasp, Diachasmimorpha longicaudata (Ashmead) (Insecta: Hymenoptera: Braconidae). Featured Creatures, EENY-193, Recent Reviews, UF/IFAS, Gainesville FL, USA. http://entnemdept.ufl.edu/creatures/beneficial/d_longicaudata.htm
Toledo J, Rasgado MA, Ibarra EJ, Gómez A, Liedo P, Williams T (2006) Infection of Anastrepha ludens following soil applications of Heterorhabditis bacteriophora in a mango orchard. Entomol Exp Appl 119:155–162
Torr P, Heritage S, Wilson MJ (2004) Vibrations as a novel signal for host location by parasitic nematodes. Int J Parasit 34(9):997–999. https://doi.org/10.1016/j.ijpara.2004.05.003
Vargas RI, Leblanc L, Harris EJ, Manoukis NC (2012) Regional suppression of Bactrocera fruit flies (Diptera: Tephritidae) in the Pacific through biological control and prospects for future introductions into other areas of the world. Insects 3(3):727–742. https://doi.org/10.3390/insects3030727
Villalobos J, Flores S, Liedo P, Malo EA (2017) Mass trapping is as effective as ground bait sprays for the control of Anastrepha (Diptera: Tephritidae) fruit flies in mango orchards. Pest Manag Sci. https://doi.org/10.1002/ps.4585 (Accepted Author Manuscript)
Wee SL, Chinvinijkul S, Tan KH, Nishida R (2017) A new and highly effective male lure for the guava fruit fly Bactrocera correcta. J Pest Sci. https://doi.org/10.1007/s10340-017-0936-y
Weems HV Jr, Heppner JB, Fasulo TR, Nation JL (2014) Caribbean fruit fly (Anastrepha suspensa Loew); Insecta: Diptera: Tephritidae). UF/IFAS, Gainesville, Featured Creatures EENY—196, July reviews. http://entnemdept.ufl.edu/creatures/fruit/tropical/caribbean_fruit_fly.htm
Willett DS, Alborn HT, Duncan LW, Stelinski LL (2015) Social networks of educated nematodes. Sci Rep 5:14388. https://doi.org/10.1038/srep14388
Zenner ANRL, O’Callaghan KM, Griffin CT (2014) Lethal fighting in nematodes is dependent on developmental pathway: male-male fighting in the entomopathogenic nematode Steinernema longicaudum. PLoS One 9(2):e89385. https://doi.org/10.1371/journal.pone.0089385