Increased atmospheric CO2 concentration causes modification of physiological, biochemical and histological characteristics that affects rice-Bipolaris oryzae interaction

Springer Science and Business Media LLC - Tập 157 - Trang 29-38 - 2020
Keilor da Rosa Dorneles1, Angelita Celente Martins2, Juliana Aparecida Fernando2, Luciano do Amarante2, Luis Antonio de Avila3, Sidnei Deuner2, Leandro José Dallagnol1
1Eliseu Maciel Faculty of Agronomy, Crop Protection Department, Laboratory of Plant Pathogen Interaction, Federal University of Pelotas, Pelotas, Brazil
2Biology Institute, Botany Department, Federal University of Pelotas, Pelotas, Brazil
3Eliseu Maciel Faculty of Agronomy, Crop Protection Department, Climate Change Research Laboratory, Federal University of Pelotas, Pelotas, Brazil

Tóm tắt

The leaf anatomy, photosynthetic system parameters and accumulation of carbohydrates were determined at different times for Bipolaris oryzae pathogenesis in two rice cultivars (BRS Querência and Inov CL), grown in an environment with 400 ppm or 700 ppm of atmospheric CO2. The results demonstrated that the plants exposed to 700 ppm underwent changes in anatomical characteristics (reduction in parenchyma thickness and size of bulliform cells), photosynthetic parameters (increased carbon assimilation rate, leaf intercellular CO2 concentration and water use efficiency, and reduction of stomatal conductance to water vapor, transpiration rate and carboxylation efficiency), and carbohydrate accumulation (increased concentration of soluble sugars and starch), when compared to plants at 400 ppm. Therefore, the changes in morphological traits of the leaf and the accumulation of carbohydrates, which were stimulated in the rice plants by increased CO2 concentration (700 ppm), were associated with less severe brown spot, caused by B. oryzae.

Tài liệu tham khảo

Abdelgawad, H., Zinta, G., Beemster, G. T., Janssens, I. A., & Asard, H. (2016). Future climate CO2 levels mitigate stress impact on plants: Increased defense or decreased challenge? Frontiers in Plant Science, 7, 556. Alquini, Y., Bona, C., Boeger, M. R. T. & Barros, C. F. (2006). Epiderme. In: Apezatto-Da-Glória, B. & Carmello-Guerreiro, S. M. (ed) Anatomia vegetal (pp. 87–108). Viçosa, UFV. Barnwal, M. K., Kotasthane, A., Magculia, N., Mukherjee, P. K., Savary, S., Sharma, A. K., Singh, H. B., Singh, U. S., Sparks, A. H., Variar, M., & Zaidi, N. (2013). A review on crop losses, epidemiology and disease management of rice brown spot to identify research priorities and knowledge gaps. European Journal of Plant Pathology, 136, 443–457. Bieleski, R. L., & Turner, A. (1996). Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Analytical Biochemistry, 17, 278–293. Biswas, M. K., Quiry, S., & Ghosh, T. (2018). Role of abiotic factors on the development of rice brown spot caused by Bipolaris oryzae (Breda de Haan) shoemaker. Bionature, 38, 86–96. Chowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7, 17251. Counce, P. A., Keisling, T. C., & Mitchell, A. J. (2000). A uniform and adaptative system for expressing rice development. Crop Science, 40, 436–443. Dallagnol, L. J., Rodrigues, F. A., Mielli, M. V., Ma, J. F., & Datnoff, L. E. (2009). Defective active silicon uptake affects some components of rice resistance to brown spot. Phytopathology, 99, 116–121. Dallagnol, L. J., Rodrigues, F. A., Martin, S. C. V., Cavatte, P. C., & DaMatta, F. M. (2011a). Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian Plant Pathology, 40, 360–365. Dallagnol, L. J., Rodrigues, F. A., Martins, S. C. V., Cavatte, P. C., & DaMatta, F. M. (2011b). Alterations on rice leaf physiology during infection by Bipolaris oryzae. Australasian Plant Pathology, 40, 360–365. Dallagnol, L. J., Rodrigues, F. A., Chaves, A. R. M., Vale, F. X. R., & DaMatta, F. M. (2013). Photosynthesis and sugar concentration are impaired by the defective active silicon uptake in rice plants infected with Bipolaris oryzae. Plant Pathology, 62, 120–129. Dallagnol, L. J., Martins, S. C. V., DaMatta, F. M., & Rodrigues, F. A. (2015). Brown spot negatively affects gas exchange and chlorophyll a fluorescence in rice leaves. Tropical Plant Pathology, 40, 275–278. Dorneles, K. R., Posso, D. A., Rebhahn, I., Deuner, S., Pazdiora, P. C., Avila, L. A., & Dallagnol, L. J. (2019). Respostas morfofisiológicas e rendimento de grãos do trigo mediados pelo aumento da concentração de CO2 atmosférico. Revista Brasileira de Ciências Agrárias, 14, 1–7. Ferris, R., Nijs, I., Behaeche, T., & Impens, I. (1996). Elevated CO2 and temperature have different effects on leaf anatomy of perennial ryegrass in spring and summer. Annals of Botany, 78, 489–497. Gória, M. M., Ghini, R., & Bettiol, W. (2013). Elevated atmospheric CO2 concentration increases rice blast severity. Tropical Plant Pathology, 38, 253–257. Grahmam, D., & Smydzuc, J. (1965). Use of anthrone in the quantitative determination of hexose phosphates. Analytical Biochemistry, 11, 246–255. Heuer, B. (1997). Photosynthetic carbon metabolism of crops under salt stress. In M. Pessarakli (Ed.), Handbook of Photosynthesis (pp. 887–896). New York. Intergovernmental Panel on Climate Change-IPCC (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Edn. IPCC, Geneva, Switzerland. Jauregui, I., Aparicio-Tejo, P. M., Avila, C., Rueda-López, M., & Aranjuelo, I. (2015). Root and shoot performance of Arabidopsis thaliana exposed to elevated CO2: A physiologic, metabolic and transcriptomic response. Journal of Plant Physiology, 189, 65–76. Jiwa, N. S., & Walling, L. L. (2001). Influence of elevated CO2 concentration on disease development in tomato. New Phytologist, 149, 509–518. Karnovsky, M. J. (1965). A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology, 27, 137–138. Mccready, R. M., Guggolz, A., Silveira, V., & Owens, H. S. (1960). Determination of starch and amylase in vegetables; aplications to peãs. Analytical Chemistry, 22, 1156–1158. Mengiste, T. (2012). Plant immunity to necrotrophs. Annual Review of Phytopathology, 50, 267–294. Mikkelsen, B. L., Olsen, C. E., & Lyngkjær, M. F. (2015). Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature. Phytochemistry, 118, 162–173. Misra, B. B., & Chen, S. (2015). Advances in understanding CO2 responsive plant metabolomes in the era of climate change. Metabolomics, 11, 1478–1491. Morkunas, I., & Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36, 1607–1619. Noctor, G., & Mhamdi, A. (2017). Climate change, CO2, and defense: The metabolic, redox, and signaling perspectives. Trends in Plant Science, 22, 857–870. Pandey, S. (2018). Physiological and biochemical changes associated with the development of brown spot diseases in rice leaves. International Journal of Advanced Agricultural Science and Technology, 5, 69–78. Pritchard, S. G., Rogers, H. H., Prior, S. A., & Peterson, C. M. (1999). Elevated CO2 and plant structure: A review. Global Change Biology, 5, 807–837. Sakai, W. S. (1973). Simple method for differential staining of paraffin embedded plant material using toluidine blue o. Stain Technology, 48, 247–249. Schwanck, A. A., & Del Ponte, E. M. (2014). Accuracy and reliability of severity estimates using linear or logarithmic disease diagram sets in true colour or black and white: A study case for rice brown spot. Journal of Phytopathology, 162, 670–682. Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611. Silva, L. M., AlquinI, Y., & Cavallet, V. J. (2005). Inter-relações entre a anatomia vegetal e a produção vegetal. Acta Botanica Brasilica, 19, 183–194. Sociedade Sul Brasileira de Arroz Irrigado - SOSBAI (2016). Arroz irrigado: recomendações técnicas da pesquisa para o Sul do Brasil. Edn. Pelotas, SOSBAI. Sunder, S., Singh, R., & Agarwal, R. (2014). Brown spot of rice: An overview. Indian Phytopathology, 67, 201–215. Tullis, E. C. (1935). Histological studies of rice leaves infected with Helminthosporium oryzae. Journal of Agricultural Research, 50, 82–90. Xiao, J. Z., Tsuda, M., Doke, N., Nishimura, S. (1991) Phytotoxins produced by germinating spores of Bipolaris oryzae. Phytopathology, 81, 58–64. Xu, Z., Jiang, Y., & Zhou, G. (2015). Response and adaptation of photosynthesis, respiration, and antioxidante systems to elevated CO2 with environmental stress in plants. Frontiers in Plant Science, 6, 701. Yang, Q. (2000). Germplasm evaluation, inheritance, molecular marker and mechanism of resistance to frogeye leaf spot. Journal of Northeast Agricultural University, 7, 1–6.