Increased Extracellular Sodium Concentration as a Factor Regulating Gene Expression in Endothelium

Biochemistry (Moscow) - Tập 87 - Trang 489-499 - 2022
Dmitry A. Fedorov1, Svetlana V. Sidorenko1, Alexander I. Yusipovich1, Olesya V. Bukach1, Andrey M. Gorbunov1, Olga D. Lopina1, Elizaveta A. Klimanova1
1Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia

Tóm tắt

Hyperosmotic stimulation of endothelial cells often leads to its dysfunction accompanied, among other things, by proinflammatory response. The mechanisms of this phenomenon are not fully understood. It may arise due to increase in the plasma Na+ concentration, due to increase in the extracellular osmolarity, increase in the intracellular Na+i/K+i ratio, and/or change in the cell stiffness. In the present study we investigated the effects of short-term increase in osmolarity of extracellular medium on the mRNA content of some genes important for endothelial function (including Na+i/K+i-sensitive ones) and the equivalent elasticity constant of human umbilical vein endothelial cells membranes. Hyperosmotic stimulation of these cells with NaCl but not mannitol resulted in accumulation of Na+ ions inside the cells despite the Na,K-ATPase activation, and was also accompanied by the decrease in their equivalent elasticity constant. The amount of IL1α mRNA decreased with increasing osmolarity of the extracellular medium, whereas the amount of ATF3, PAR2, and PTGS2 mRNAs increased only in response to the increasing NaCl concentration. At the same time, under the conditions of our experiments, we did not detect changes in the expression of the osmoprotective transcription factor NFAT5. The obtained data indicate that the increase of extracellular Na+ concentration in the physiological range is an independent factor that affects intracellular Na+i/K+i ratio and regulates expression of some genes (in particular, ATF3, PAR2, PTGS2) in endothelial cells.

Tài liệu tham khảo

Wenzel, U. O., Bode, M., Kurts, C., and Ehmke, H. (2019) Salt, inflammation, IL-17 and hypertension, Br. J. Pharmacol., 176, 1853-1863, https://doi.org/10.1111/bph.14359. Aramburu, J., and López-Rodríguez, C. (2019) Regulation of inflammatory functions of macrophages and T lymphocytes by NFAT5, Front.Immunol., 10, 535, https://doi.org/10.3389/fimmu.2019.00535. Zimmer, M. A., Zink, A. K., Weißer, C. W., Vogt, U., Michelsen, A., et al. (2020) Hypernatremia – a manifestation of COVID-19: A case series, A A Pract., 14, e01295, https://doi.org/10.1213/XAA.0000000000001295. Hawkins, R. C. (2003) Age and gender as risk factors for hyponatremia and hypernatremia, Clin. Chim. Acta, 337, 169-172, https://doi.org/10.1016/j.cccn.2003.08.001. Staiger, R. D., Sarnthein, J., Wiesli, P., Schmid, C., and Bernays, R. L. (2013) Prognostic factors for impaired plasma sodium homeostasis after transsphenoidal surgery, Br. J. Neurosurg., 27, 63-68, https://doi.org/10.3109/02688697.2012.714013. Minegishi, S., Luft, F.C., Titze, J., and Kitada, K. (2020) Sodium handling and interaction in numerous organs, Am. J. Hypertens., 33, 687-694, https://doi.org/10.1093/ajh/hpaa049. Olde Engberink, R. H. G., Rorije, N. M. G., van den Born, B.-J. H., and Vogt, L. (2017) Quantification of nonosmotic sodium storage capacity following acute hypertonic saline infusion in healthy individuals, Kidney Int., 91, 738-745, https://doi.org/10.1016/j.kint.2016.12.004. Oberleithner, H., and Wilhelmi, M. (2015) Vascular glycocalyx sodium store – determinant of salt sensitivity? Blood Purif., 39, 7-10, https://doi.org/10.1159/000368922. Burg, M. B., Ferraris, J. D., and Dmitrieva, N. I. (2007) Cellular response to hyperosmotic stresses, Physiol. Rev., 87, 1441-1474, https://doi.org/10.1152/physrev.00056.2006. Choi, S. Y., Lee-Kwon, W., and Kwon, H. M. (2020) The evolving role of TonEBP as an immunometabolic stress protein, Nat. Rev. Nephrol., 16, 352-364, https://doi.org/10.1038/s41581-020-0261-1. Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O.A., Tremblay, J., et al. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: Evidence for Ca2+i-independent excitation-transcription coupling, PLoS One, 7, e38032, https://doi.org/10.1371/journal.pone.0038032. Klimanova, E. A., Sidorenko, S. V., Smolyaninova, L. V., Kapilevich, L. V., Gusakova, S. V., et al. (2019) Current Topics in Membranes, Academic Press. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275, https://doi.org/10.1016/0304-3894(92)87011-4. Vereninov, A., Rubashkin, A., Goryachaya, T., Moshkov, A., Rozanov, Y., et al. (2008) Pump and channel K+ (Rb+) fluxes in apoptosis of human lymphoid cell line U937, CPB, 22, 187-194, https://doi.org/10.1159/000149796. Ponomarchuk, O. O., Boudreault, F., Shiyan, A. A., Maksimov, G. V., Grygorczyk, R., et al. (2018) A method to simultaneously detect changes in intracellular Ca2+ concentration and cell volume, Biophysics, 63, 369-374, https://doi.org/10.1134/S000635091803020X. Yusipovich, A. I., Parshina, E. Yu., Baizhumanov, A. A., Pirutin, S. K., Ivanov, A. D., et al. (2021) Use of a laser interference microscope for estimating fluctuations and the equivalent elastic constant of cell membranes, Instr. Exp. Tech., 64, 877-885, https://doi.org/10.1134/S0020441221060129. Rappaz, B., Barbul, A., Hoffmann, A., Boss, D., Korenstein, R., et al. (2009) Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy, Blood Cells Mol. Dis., 42, 228-232, https://doi.org/10.1016/j.bcmd.2009.01.018. Yusipovich, A. I., Parshina, E. Yu., Brysgalova, N. Yu., Brazhe, A. R., Brazhe, N. A., et al. (2009) Laser interference microscopy in erythrocyte study, J. Appl. Phys., 105, 102037, https://doi.org/10.1063/1.3116609. Popescu, G., Ikeda, T., Goda, K., Best-Popescu, C. A., Laposata, M., et al. (2006) Optical measurement of cell membrane tension, Phys. Rev. Lett., 97, 218101, https://doi.org/10.1103/PhysRevLett.97.218101. Chandra, S., Narang, R., Sreenivas, V., Bhatia, J., Saluja, D., et al. (2014) Association of angiotensin II type 1 receptor (A1166C) gene polymorphism and its increased expression in essential hypertension: A case-control study, PLoS One, 9, e101502, https://doi.org/10.1371/journal.pone.0101502. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0. Lang, F. (2007) Mechanisms and significance of cell volume regulation, J. Am. College Nutr., 26, 613S-623S, https://doi.org/10.1080/07315724.2007.10719667. Brochard, F., and Lennon, J. F. (1975) Frequency spectrum of the flicker phenomenon in erythrocytes, J. Phys. France, 36, 1035-1047, https://doi.org/10.1051/jphys:0197500360110103500. Kononenko, V. L. (2009) Flicker in erythrocytes. II. Results of experimental studies, Biochem. Moscow Suppl. Ser. A, 3, 372-387, https://doi.org/10.1134/S1990747809040035. Turlier, H., and Betz, T. (2018) Fluctuations in active membranes, ArXiv: 1801.00176. Fedorov, D. A., Sidorenko, S. V., Yusipovich, A. I., Parshina, E. Y., Tverskoi, A. M., et al. (2021) Na+i/K+i imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl, Heliyon, 7, e08088, https://doi.org/10.1016/j.heliyon.2021.e08088. Lang, F. (2011) Stiff endothelial cell syndrome in vascular inflammation and mineralocorticoid excess, Hypertension, 57, 146-147, https://doi.org/10.1161/HYPERTENSIONAHA.110.164558. Shiyan, A. A., Sidorenko, S. V., Fedorov, D., Klimanova, E. A., Smolyaninova, L. V., et al. (2019) Elevation of intracellular Na+ contributes to expression of early response genes triggered by endothelial cell shrinkage | cell physiol biochem, Cell. Physiol. Biochem., 53, 638-647. Neuhofer, W. (2010) Role of NFAT5 in inflammatory disorders associated with osmotic stress, Curr. Genomics, 11, 584-590, https://doi.org/10.2174/138920210793360961. Favale, N. O., Casali, C. I., Lepera, L. G., Pescio, L. G., and Fernández-Tome, M. C. (2009) Hypertonic induction of COX2 expression requires TonEBP/NFAT5 in renal epithelial cells, Biochem. Biophys. Res. Commun., 381, 301-305, https://doi.org/10.1016/j.bbrc.2008.12.189. Neubert, P., Weichselbaum, A., Reitinger, C., Schatz, V., Schröder, A., et al. (2019) HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting, Autophagy, 15, 1899-1916, https://doi.org/10.1080/15548627.2019.1596483. Halterman, J. A., Kwon, H. M., and Wamhoff, B. R. (2011) Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5), Am. J. Physiol. Cell Physiol., 302, C1-C8, https://doi.org/10.1152/ajpcell.00327.2011. Oberleithner, H., Callies, C., Kusche-Vihrog, K., Schillers, H., Shahin, V., et al. (2009) Potassium softens vascular endothelium and increases nitric oxide release, Proc. Natl. Acad. Sci. USA, 106, 2829-2834, https://doi.org/10.1073/pnas.0813069106. Kim, G.-N., Hah, Y.-S., Seong, H., Yoo, W.-S., Choi, M.-Y., et al. (2021) The role of nuclear factor of activated T cells 5 in hyperosmotic stress-exposed human lens epithelial cells, Int. J. Mol. Sci., 22, 6296, https://doi.org/10.3390/ijms22126296. Chien, S. (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell, Am. J. Physiol. Heart Circ. Physiol., 292, H1209-H1224, https://doi.org/10.1152/ajpheart.01047.2006. Neuhofer, W. (2014) Focal adhesion kinase regulates the activity of the osmosensitive transcription factor TonEBP/NFAT5 under hypertonic conditions, Front. Physiol., 5, 123, https://doi.org/10.3389/fphys.2014.00123.