Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks

Nature Chemistry - Tập 8 Số 2 - Trang 171-178 - 2016
Biao Kong1, Jing Tang1, Yueyu Zhang2, Tao Jiang2, Xin-Gao Gong2, Chengxin Peng3, Jing Wei1, Jianping Yang1, Yongcheng Wang1, Xianbiao Wang4, Gengfeng Zheng1, Cordelia Selomulya4, Dongyuan Zhao4
1Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
2Department of Physics, Key Laboratory of Computational Physical Sciences, Ministry of Education, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China, and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China,
3Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117546, Singapore
4Department of Chemical Engineering, Monash University, Clayton 3800, Victoria, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

Tian, B. et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid–base pairs. Nature Mater. 2, 159–163 (2003).

Lee, J. S., Wang, X., Luo, H., Baker, G. A. & Dai, S. Facile ionothermal synthesis of microporous and mesoporous carbons from task specific ionic liquids. J. Am. Chem. Soc. 131, 4596–4597 (2009).

Liu, J. et al. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Commun. 4, 2789 (2013).

Guo, B. et al. Soft-templated mesoporous carbon‒carbon nanotube composites for high performance lithium‒ion batteries. Adv. Mater. 23, 4661–4666 (2011).

Baeck, S. H., Choi, K. S., Jaramillo, T. F., Stucky, G. D. & McFarland, E. W. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv. Mater. 15, 1269–1273 (2003).

Gao, J. et al. High-performance ionic diode membrane for salinity gradient power generation. J. Am. Chem. Soc. 136, 12265–12272 (2014).

Fan, R., Huh, S., Yan, R., Arnold, J. & Yang, P. Gated proton transport in aligned mesoporous silica films. Nature Mater. 7, 303–307 (2008).

Li, Y. et al. Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew. Chem. Int. Ed. 53, 9035–9040 (2014).

Qin, Y. et al. Hierarchically porous CuO hollow spheres fabricated via a one-pot template-free method for high-performance gas sensors. J. Phys. Chem. C 116, 11994–12000 (2012).

Neyshtadt, S. et al. Understanding and controlling organic–inorganic interfaces in mesostructured hybrid photovoltaic materials. J. Am. Chem. Soc. 133, 10119–10133 (2011).

Inagaki, S., Guan, S., Ohsuna, T. & Terasaki, O. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416, 304–307 (2002).

Klaysom, C., Moon, S.-H., Ladewig, B. P., Lu, G. Q. M. & Wang, L. The influence of inorganic filler particle size on composite ion-exchange membranes for desalination. J. Phys. Chem. C 115, 15124–15132 (2011).

Fang, W., Yang, J., Gong, J. & Zheng, N. Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv. Funct. Mater. 22, 842–848 (2012).

Yu, A., Wang, Y., Barlow, E. & Caruso, F. Mesoporous silica particles as templates for preparing enzyme-loaded biocompatible microcapsules. Adv. Mater. 17, 1737–1741 (2005).

Lee, C.-H., Lin, T.-S. & Mou, C.-Y. Mesoporous materials for encapsulating enzymes. Nano Today 4, 165–179 (2009).

Galeano, C. et al. Toward highly stable electrocatalysts via nanoparticle pore confinement. J. Am. Chem. Soc. 134, 20457–20465 (2012).

Fang, X. et al. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors. ACS Nano 6, 4434–4444 (2012).

Scott, B. J., Wirnsberger, G. & Stucky, G. D. Mesoporous and mesostructured materials for optical applications. Chem. Mater. 13, 3140–3150 (2001).

Wan, Y. & Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 107, 2821–2860 (2007).

Qiao, S. Z. et al. Surface-functionalized periodic mesoporous organosilica hollow spheres. J. Phys. Chem. C 113, 8673–8682 (2009).

Inagaki, S. et al. Light harvesting by a periodic mesoporous organosilica chromophore. Angew. Chem. Int. Ed. 48, 4042–4046 (2009).

Tsou, C.-J., Chu, C.-Y., Hung, Y. & Mou, C.-Y. A broad range fluorescent pH sensor based on hollow mesoporous silica nanoparticles, utilising the surface curvature effect. J. Mater. Chem. B 1, 5557–5563 (2013).

Guan, M. et al. Assembling photoluminescent silicon nanocrystals into periodic mesoporous organosilica. J. Am. Chem. Soc. 134, 8439–8446 (2012).

Wan, Y., Yang, H. & Zhao, D. Y. ‘Host–guest’ chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc. Chem. Res. 39, 423–432 (2006).

Petkovich, N. D. & Stein, A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem. Soc. Rev. 42, 3721–3739 (2013).

Rebbin, V., Rothkirch, A., Ohta, N., Hikima, T. & Funari, S. S. Size limit on the formation of periodic mesoporous organosilicas (PMOs). Langmuir 30, 1900–1905 (2014).

Wang, Y. & Hu, A. Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2, 6921–6939 (2014).

Ding, C., Zhu, A. & Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20–30 (2013).

Zhang, R. et al. Ordered macro-/mesoporous anatase films with high thermal stability and crystallinity for photoelectrocatalytic water-splitting. Adv. Energy Mater. 4, 1301725 (2014).

Kong, B. et al. Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 24, 5844–5848 (2012).

Feng, D. et al. Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. J. Mater. Chem. A 1, 1591–1599 (2013).

Wang, M. et al. An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. J. Am. Chem. Soc. 136, 1884–1892 (2014).

Sun, Z. et al. A general chelate-assisted co-assembly to metallic nanoparticles—incorporated ordered mesoporous carbon catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 134, 17653–17660 (2012).

Blöuml, P. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

Tang, W., Sanville, E. & Henkelman, G. A grid‒based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

Du, A. et al. Hybrid graphene/titania nanocomposite: interface charge transfer, hole doping, and sensitization for visible light response. J. Phys. Chem. Lett. 2, 894–899 (2011).

Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. J. Am. Chem. Soc. 136, 4394–4403 (2014).

Tang, J. et al. Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface. Nano Lett. 14, 2702–2708 (2014).